SciELO - Scientific Electronic Library Online

 
vol.12 issue22Performance Analysis at Link Level, for the Next-Generation 802.11N Wi-Fi ChannelLow-Cost Electronic Opening Control Valve author indexsubject indexarticles search
Home Pagealphabetic serial listing  

Services on Demand

Journal

Article

Indicators

Related links

  • On index processCited by Google
  • Have no similar articlesSimilars in SciELO
  • On index processSimilars in Google

Share


Tecciencia

Print version ISSN 1909-3667

Abstract

RAMIREZ-MURILLO, Harrynson et al. LMI Control Design of a Non-Inverting Buck-Boost Converter: a Current Regulation Approach. Tecciencia [online]. 2017, vol.12, n.22, pp.79-85. ISSN 1909-3667.  https://doi.org/10.18180/tecciencia.2017.22.9.

This paper presents an analytical study of an input current-mode control based on a linear matrix inequalities (LMI) for a non-inverting buck-boost converter. The LMI control technique makes better the dynamic response of this converter in comparison with previous research works, where its currents has been regulated using a classical analogue PI controller with an additional pole. The main features of the selected converter are its voltage step-up and step-down properties, high efficiency, wide bandwidth and low input and output current ripples. All of these converter’s properties allows it to be used as a modular converter capable of being positioned at any converter locations in hybrid systems, which are formed by varying-voltage-sources, current controlled dc-dc converters and auxiliary storage devices such as batteries or capacitors. The designed state-feedback controller has the following aims, among others: pole placement constraints, control effort limitation, and decay rate and bandwidth improvement. The use of state-space averaging (SSA) method allows to describe LMI constraints which guarantees stability and provide good performances under a close loop pole region and control signal bound. The theoretical analysis have been simulated by means of Matlab and PSIM on an 800-W coupled-inductor buck-boost dc-dc switching converter.

Keywords : Coupled Inductors; Current Control; DC-DC Power Converters; Linear Matrix Inequality (LMI); Non-Inverting Buckboost Converter.

        · abstract in Spanish     · text in English     · English ( pdf )