SciELO - Scientific Electronic Library Online

 
vol.7 issue13AUTOMATIC TRANSLATION OF THE DACTILOLOGIC LANGUAGE OF HEARING IMPAIRED BY ADAPTIVE SYSTEMS author indexsubject indexarticles search
Home Pagealphabetic serial listing  

Services on Demand

Journal

Article

Indicators

Related links

  • On index processCited by Google
  • Have no similar articlesSimilars in SciELO
  • On index processSimilars in Google

Share


Revista Ingeniería Biomédica

Print version ISSN 1909-9762

Abstract

VALENCIA SERNA, Juliana  and  PINEDA MOLINA, Catalina. MATRIX CONSTRUCTION AS DERMAL SUBSTITUTES: POTENTIAL APPLICATION IN SKIN REGENERATION. Rev. ing. biomed. [online]. 2013, vol.7, n.13, pp.10-17. ISSN 1909-9762.

Wounds can cause loss of skin that limits the skin regeneration, making the treatment more difficult to address. The tissue engineering has developed skin substitutes that promote skin regeneration; however, it is imperative to find materials that allow fibroblast growth in order to find an appropriate skin substitute. The construction of tridimensional porous collagen and collagenhyaluronic acid matrixes crosslinked with 1-ethyl-3-(3-dimethyl aminopropyl) carbodiimide hydrochloride is presented in order to evaluate their potential use in skin regeneration therapies. Matrix porosity was evaluated. Degradation tests, human fibroblast adherence, viability and proliferation tests were performed. Matrixes had a uniform distributed porosity with mean diameters of 50 µm. Both collagen and collagen-hyaluronic acid (2:8 and 4:6) matrixes presented a progressive degradation rate with similar weight. After 24 hours under culture, the number of fibroblasts seeded on collagen matrixes were doubled, while the number of fibroblast seeded on collagen-hyaluronic acid matrixes remained similar. Even though porous structure and degradation rate of different types of constructed matrixes in this study are similar, collagen matrixes offer better adhesion and proliferation conditions for seeded fibroblasts in comparison with hyaluronic acid added matrixes, making them the best scaffold to be employed as a dermic substitute among the matrixes compared here.

Keywords : Collagen; Extracellular matrix; Fibroblasts; Hyaluronic acid.

        · abstract in Spanish     · text in Spanish     · Spanish ( pdf )