SciELO - Scientific Electronic Library Online

 
vol.13 issue2Growth analysis of green-leaf lettuce under different sources and doses of organic and mineral fertilizationSelecting squash (Cucúrbita sp.) introductions by seed nutritional quality and seed meal author indexsubject indexarticles search
Home Pagealphabetic serial listing  

Services on Demand

Journal

Article

Indicators

Related links

  • On index processCited by Google
  • Have no similar articlesSimilars in SciELO
  • On index processSimilars in Google

Share


Revista Colombiana de Ciencias Hortícolas

Print version ISSN 2011-2173

Abstract

PEREIRA, Isabella Sabrina et al. How does the physiological activity and growth of tomato plants react to the use of a soil-mineral compound?. rev.colomb.cienc.hortic. [online]. 2019, vol.13, n.2, pp.248-258. ISSN 2011-2173.  https://doi.org/10.17584/rcch.2019v13i2.9292.

The tomato crop has a high productive potential that can be depleted by biotic and abiotic stresses. Increased plant resilience to stress conditions has been reported with foliar applications of soil-mineral compounds; however, it is necessary to better understand how plants react to the use of this compound. Thus, this study evaluated the effect of foliar applications of a soil-mineral compound on the physiological and growth attributes of tomato plants. This experiment was carried out in Lagoa Formosa/MG during 2016. Different rates of the soil-mineral compound were used during the crop cycle, forming four distinct managements. The management consisted of different doses of the mineral compound in four stages after transplanting the tomato seedlings. The experiment design used randomized blocks. The following physiological evaluations were performed: total soluble protein, hydrogen peroxide, nitrate reductase enzyme activity, urease, superoxide dismutase (SOD), peroxidase, phenylalanine ammonia lyase, and lipid peroxidation (LP). The growth assessments were plant biomass and yield. Foliar applications of the soil-mineral compound increased the activity of the SOD enzyme by 4.17 and 6.25%. The use of the soil-mineral compound also increased the LP activity and reduced the antioxidant enzyme activity. The foliar application of the soil-mineral compost at doses of 0.5, 0.750, 1.0 and 1.0 kg ha-1 at 15, 25, 40 and 60 days after transplanting, respectively, increased the yield of the table tomatoes by 20%.

Keywords : resistance inducers; oxidative metabolism; productivity; fertilizers.

        · abstract in Spanish     · text in English     · English ( pdf )