SciELO - Scientific Electronic Library Online

 
vol.50 número1Nitratos e nitratos dietéticos como possíveis causas de câncer: uma revisão índice de autoresíndice de assuntospesquisa de artigos
Home Pagelista alfabética de periódicos  

Serviços Personalizados

Journal

Artigo

Indicadores

Links relacionados

  • Em processo de indexaçãoCitado por Google
  • Não possue artigos similaresSimilares em SciELO
  • Em processo de indexaçãoSimilares em Google

Compartilhar


Revista Colombiana de Ciencias Químico - Farmacéuticas

versão impressa ISSN 0034-7418versão On-line ISSN 1909-6356

Rev. colomb. cienc. quim. farm. vol.50 no.1 Bogotá jan./abr. 2021  Epub 05-Nov-2021

https://doi.org/10.15446/rcciquifa.v50n1.95463 

Scientific Research Articles

Prediction of sulfamerazine and sulfamethazine solubility in some cosolvent mixtures using non-ideal solution models

Predicción de la solubilidad de sulfamerazina y sulfametazina en algunas mezclas cosolventes utilizando modelos de solución no ideales

Predição da solubilidade de sulfamerazina e sulfametazina em algumas misturas de cosolventes usando modelos de solução não ideais

Luz Elena Tinoco1 

Diana M. Galindres1 

Jhonny Osorio1 

Rossember E. Cárdenas1  * 

1Grupo de Fisicoquímica y Análisis Matemático, Facultad de Ciencias y Humanidades, Fundación Universidad de América, Avda Circunvalar No. 20-53, Bogotá D. C., Colombia.


SUMMARY

Introduction:

Experimental Solubilities of sulfamerazine (SMR) and sulfamethazine (SMT) in some (methanol + water), (ethanol + water) and (1-propanol + water) cosolvent mixtures were collected from the literature at five temperatures from 293.15 to 313.15 K.

Methodology:

The results were analyzed with the van't Hoff, Apelblat modified, Buchowski-Ksiazaczak λh, van't Hoff-Yaws model, two-parameter Weibull function model. It was determined that the models that best describe the solubility of these sulfonamides in (alcohol + water) mixtures were the van't Hoff and Apelblat models, obtaining correlation indices greater than 0.99 in all cases.

Results:

The results obtained with the Modified Apelblat equation presents a high correlation index for the solubility of SMR and SMT in cosolvent mixtures, followed by the van't Hoff-Yaws model that presents a high fit of the estimated data with respect to the theoretical ones. According to the two-parameter Weibull function model, the solubility ofSMR and SMT in the co-solvent mixtures shows important deviations from ideality, which is consistent with the literature. The results are discussed in terms of the solute-solvent interactions that occur in this system.

Keywords: Sulfamerazine; sulfamethazine; solubility; van't Hoff model; Apelblat modified model; Buchowski-Ksiazaczak 2h model; van't Hoff-Yaws model; two-parameter Weibull function model

RESUMEN

Introducción:

Las solubilidades experimentales de la sulfamerazina (SMR) y la sulfametazina (SMT) en algunas mezclas cosolvents (metanol + agua), (etanol + agua) y (1-propanol + agua), se revisaron en la literatura a cinco temperaturas de 293,15 a 313,15 K.

Metodología:

Los resultados se analizaron con el modelo van't Hoff, Apelblat modificado, Buchowski-Ksiazaczak λh, van't Hoff-Yaws, y el modelo de la función Weibull de dos parámetros. Se determinó que los modelos que mejor describen la solubilidad de estas sulfonamidas en mezclas (alcohol + agua) son los modelos de van't Hoffy Apelblat, obteniendo índices de correlación superiores a 0,99 en todos los casos.

Resultados:

Los resultados obtenidos con la ecuación de Apelblat modiicada presentan un alto índice de correlación para la solubilidad de SMR y SMT en mezclas de cosolventes, seguido del modelo van't Hoff-Yaws que presenta un alto ajuste de los datos calculados con respecto a los teóricos. Según el modelo de la función de Weibull de dos parámetros, la solubilidad de la SMR y la SMT en las mezclas de cosolventes muestra importantes desviaciones de las ideales, lo que es coherente con la literatura. Los resultados se discuten en términos de las interacciones soluto-solvente que se producen en este sistema.

Palabras clave: Sulfametazina; sulfamerazina; solubilidad; modelo de van't Hoff; modelo de Apelblat modificado; modelo de Buchowski-Ksiazaczak 2h; modelo de van't Hoff-Yaws; modelo de Weibull de dos parámetros

RESUMO

Introdução:

As solubilidades experimentais de sulfamerazina (SMR e sulfametazina (SMT) em algumas misturas de cossolventes (metanol + água), (etanol + água) e (1-propanol + água), foram revisadas na literatura em cinco temperaturas de 293,15 a 313,15 K.

Metodologia:

Os resultados foram analisados com o modelo van't Hoff, Apelblat modificado, Buchowski-Ksiazaczak λh, van't Hoff-Yaws e o modelo de função Weibull de dois parâmetros. Determinou-se que os modelos que melhor descrevem a solubilidade dessas sulfonamidas em misturas (álcool + água) são os modelos van't Hoff e Apelblat, obtendo índices de correlação superiores a 0,99 em todos os casos.

Resultados:

Os resultados obtidos com a equação de Apelblat modi-icada apresentam um alto índice de correlação para a solubilidade de SMR e SMT em misturas de cosolventes, seguido pelo modelo de van't Hoff-Yaws que apresenta um alto ajuste dos dados calculados em relação a teóricos. De acordo com o modelo de função Weibull de dois parâmetros, a solubilidade de SMR e SMT em misturas de cosolventes apresenta desvios signiicativos dos ideais, o que é consistente com a literatura. Os resultados são discutidos em termos das interações soluto-solvente que ocorrem neste sistema.

Palavras-chave: Sulfametazina; sulfamerazina; solubilidade; modelo van't Hoff; modelo Apelblat modificado; modelo Buchowski-Ksiazaczak 2h; modelo van't Hoff-Yaws; modelo Weibull de dois parâmetros

INTRODUCTION

Sulfamerazine (4-amino-N-(4-methylpyrimidin-2-il) benzene-1-sulfonamide) (figure 1) and sulfamethazine (4-amino-N-(4,6-dimethylpyrimidin-2-il) benzene-1-sulfonamide) (figure 2) are members of the sulfonamide family [1]. Sulfonamides are derived from p-amino-benzene-sulfonamide and are characterized by having a benzene nucleus with an amino group (-NH2) and a sulfonamide group (-SO2NH2) [2]. These compounds have been used as chemotherapeutic agents for the prevention of bacterial infections in humans [3]. Additionally, they have been recognized as a starting point for the synthesis of new drugs due to the different pharmacological actions that they can carry out, such as: anti-cancer activity, anti-tumor effect, anti-inflammatory effect, among others [4].

Figure 1 Molecular structure of sulfamerazine. 

Figure 2 Molecular structure of sulfamethazine. 

The solubility data of different compounds, especially the ones with pharmaceutical applications, in neat solvents and their mixtures is a very important parameter influencing the design of the drug, its evaluation, as well as its application and future optimization. It is then understandable that many experiments are carried out in order to quantify this solubility in different solvents. Such efforts are undertaken also in the field of sulfonamides and one can include here the works of Delgado et al. [5-9], Cruz et al. [10], Kodide et al. [11], Martínez et al. [12, 13], Romdhani et al. [14], and Blanco et al. [15-17]. Alongside the experimental measurements, many theoretical solubility models have been developed for accurate prediction of solubility and for better understanding of the interactions occurring in solute-solvent systems [18-22].

At present, the development of mathematical models that allow predicting the solubility of bioactive substances in solvents of industrial/pharmaceutical interest is a line of research of great importance [23-26]. Thus, the development of models allows the development of more efficient industrial processes, which in turn reduce the environmental impact [27-29].

Thus, the objective of this work is to challenge the mathematical models of van't Hoff, Apelblat modified, Buchowski-Ksiazaczak λh, van't Hoff-Yaws model and two-parameter Weibull function model, from experimental solubility data, Sulfamethazine and Sulfamethazine using Python programming language.

THEORETICAL

Modified Apelblat Equation

The modified Apelblat equation, which is an empirical model derived from solid-liquid equilibrium [30, 31]:

x 3 refers to measured mole fraction solubility of drug in selected solvent at absolute temperature T, A and B reflect the variation in the solution activity coefficient, and C represents the influence of temperature on enthalpy of fusion [32].

van't Hoff-Yaws

The Yaws model are semi-empirical model included three-parameters extension that allow correlating the solubility with the temperature as follows [33]:

where A, B and C are adjustable parameters [34].

Two-parameter Weibull function model

There is little literature that explains the dependence of temperature on the activity coefficient in equilibrium solutions. The activity coefficient in a solution is a function of T and x, but in the direction of increasing temperature, the saturation concentration approaches unity while converging with the ideal case at the limit of Tm, and the following boundary conditions explain the equilibrium activity coefficient [35, 36]:

At T = Tm

Svärd and Rasmuson [36] identified the necessary boundary conditions for prediction of compound solubilities by extrapolation at higher or lower temperatures to the melting point. They proposed a model that meets these boundary conditions and the mathematical formula used in the probability theory and statistics of the Weibull distribution was adopted. Equation 6 shows the temperature dependence of the activity coefficient of a solution in equilibrium:

where: A and B are adjustable parameters, C is a parameter that has to be above 2 in order to satisfy two boundary conditions in equation 2, Tm refers to the melting point of the substance.

van't Hoff Equation

The van't Hoff equation is also a semi-empirical equation, which reveals the relationship between the mole fraction solubility and the temperature in an ideal solution by taking the solvent effect into account [37].

A and B are parameters, which can be related to thermodynamic parameters such as dissolution enthalpy and dissolution entropy [38].

Buchowski-Ksiazaczak λh model

In 1980, based on the generalized relationship, the Buchowski-Ksiazaczak λh equation was first proposed, which contains two parameters and is widely used to correlate solubility data:

where λ and h are the two parameters of the λh model, and Tm represents the melting point of drug [18, 39, 40].

RESULTS AND DISCUSSION

The solubilities of sulfamerazine and sulfamethazine in mixtures of (methanol + water), (ethanol + water) and (1-propanol + water) were taken from Delgado and Martinez [6, 7, 41, 42].

The experimental solubility data calculations were correlated with Apelblat modified equation (1), Yaws model (2), two-parameter Weibull function model (4), van't Hoff (5), Buchowski-Ksiazaczak λh (6) using Python 3.6 version using Pandas and NumPy Library, the parameters of the models were estimated with SciPy Library and plots were made with Plotly Library.

Table 1 and table 3 show the parameters of the equations of Apelblat modified, van't Hoff-Yaws, two-parameter Weibull function model, van't Hoff, Buchowski-Ksiazaczak λh, for the solubility of SMR and SMT in (methanol + water), (ethanol + water) and (1-propanol + water) cosolvents mixtures.

Table 1 The Apelblat modified equation, van’t Hoff-Yaws model, two-parameter Weibull function model, van’t Hoff and Buchowski-Ksiazaczak λh equations parameters for sulfamerazine in (methanol + water), (ethanol + water) and (1-propanol + water) cosolvent mixtures. 

The figure 3, 4 and 5 show the experimental data vs. the estimated data of sulfamerazine in cosolvent mixtures, linear holdings are obtained. Table 2 shows correlation coefficients equal to 0.99, corroborating that these models show good agreement with the experimental solubility data.

Figure 3 Experimental solubility vs estimated solubility by van't Hoff, Apelblat modified, Buchowski-Ksiazaczak λh, van't Hoff-Yaws model and two-parameter Weibull function model of sulfamerazine in (methanol + water) mixtures. 

Figure 4 Experimental solubility vs estimated solubility by van't Hoff, Apelblat modified, Buchowski-Ksiazaczak λh, van't Hoff-Yaws model and two-parameter Weibull function model of sulfamerazine in (ethanol + water) mixtures. 

Figure 5 Experimental solubility vs estimated solubility by van't Hoff, Apelblat modified, Buchowski-Ksiazaczak λh, van't Hoff-Yaws model and two-parameter Weibull function model of sulfamerazine in (propanol + water) mixtures. 

The values of the obtained equation parameters of the solubility studied were estimated by minimizing the value of the mean squared deviation (RMSD), equation 9, and the mean absolute percentage error (MAPE) shown in equation 10, as criteria to assess the quality of the fit and the comparison between the models. The difference between these two parameters is that MAPE express precision as a percentage, it measures the size of the absolute error in percentage. While the RMSD, it is a comparative measure between two sets of data, in this case the experimental and the estimated value.

where: x est i is the estimated mole fraction value, x exp i is the experimental mole fraction value and N is the number of experimental points.

Table 2 shows the statistical measurements of sulfamerazine in cosolvents mixtures, when evaluating the mean absolute percentage error (MAPE) and the mean square deviation (RMSD) it is evidenced that the modified Apelblat and van't Hoff-Yaws model have lowest percentage in the three solvents, 1.1% in methanol and ethanol and 0.6% in propanol, therefore these models are the ones that have the best agreement with the experimental solubility data, in the same way the Buchowski-Ksiazczak model and van't Hoff model have equal MAPE values being a value of 1.5% in methanol, 1.2% in ethanol and 0.8% in 1-propanol. However, these values are very similar for the four models, which shows good agreement with the experimental data of solubility of sulfamerazine. Additionally, Two-parameter Weibull function model shows higher values for absolute percentage error in three solvents, it is the weakest model to correlate the solubility data of the SMR at different temperatures.

Table 2 Statistical measures by van't Hoff, Apelblat modified, Buchowski-Ksiazaczak λh, van't Hoff-Yaws model and two-parameter Weibull function model of sulfamerazine in (methanol + water), (ethanol + water) and (1-propanol + water) mixtures. 

Table 3 The Apelblat modified equation, van’t Hoff-Yaws model, two-parameter Weibull function model, van’t Hoff and Buchowski-Ksiazaczak λh equations parameters for sulfamethazine in (methanol + water), (ethanol + water) and (1-propanol + water) cosolvent mixtures. 

The figure 6, 7 and 8 show the experimental data vs. the estimated data of sulfamethazine y cosolvent mixtures, linear holdings are obtained. Table 4 shows correlation coefficients equal to 0.99, corroborating that these models show good agreement with the experimental solubility data.

Figure 6 Experimental solubility vs estimated solubility by van't Hoff, Apelblat modified, Buchowski-Ksiazaczak λh, van't Hoff-Yaws model, two-parameter Weibull function model of sulfamethazine in (methanol + water) mixtures. 

Figure 7 Experimental solubility vs estimated solubility by van't Hoff, Apelblat modified, Buchowski-Ksiazaczak λh, van't Hoff-Yaws model, two-parameter Weibull function model of sulfamethazine in (ethanol + water) mixtures. 

Figure 8 Experimental solubility vs. estimated solubility by van't Hoff, Apelblat modified, Buchowski-Ksiazaczak λh, van't Hoff-Yaws model, two-parameter Weibull function model of sulfamethazine in (1-propanol + water) mixtures. 

Table 4 shows the statistical measurements of sulfamethazine in cosolvent mixtures, when evaluating the mean absolute percentage error (MAPE), the same behavior as for sulfamerazine is evidenced. The models that show the best relationship are the modified Apelblat model and the van't Hoff-Yaws model. There is a good correlation between the experimental results and those obtained theoretically in this study with these models. Subsequently, a good correlation is found with the data of the Buchowski-Ksiazczak model and van't Hoff model and finally for the Two-parameter Weibull function model the mean absolute percentage error has higher values in the case of the three solvents. For SMR and SMT, it is evident that for most models, the lowest MAPE values are found for the propanol.

Table 4 Statistical measures by van't Hoff, Apelblat modified, Buchowski-Ksiazaczak λh, van't Hoff-Yaws model, two-parameter Weibull function model of sulfamethazine in (methanol + water), (ethanol + water) and (1-propanol + water) mixtures. 

Table 2 and table 4 show that in all cases the same behavior mentioned above was obtained for MAPE when the mean square deviation (RMSD) is analyzed, the following behavior is found: RMSD: Apelblat modified model = van't Hoff-Yaws model < Buchowski-Ksiazaczak λh = van't Hoff model < Two-parameter Weibull function model.

This statistical measure corroborates that the models that have the best fit with the experimental measures are Apelblat modified model and van't Hoff-Yaws model in all co-solvent mixtures.

CONCLUSIONS

The use of the Python programming language has proven to be very useful to determine the parameters of the different models developed in this research. The theoretical results, obtained through each of the mathematical models used, present small deviations with respect to the experimental data, also indicating the relevance of the mathematical models to calculate the solubility data of sulfamerazine and sulfamethazine in co-solvent mixtures.

ACKNOWLEDGEMENTS

The authors gratefully acknowledge support from the Faculty of Science and humanities and research direction of the Fundación Universidad de America. Further, Colciencias supported the doctoral fellowship [6172] to Diana M. Galindes.

REFERENCES

1. R. Cohen-Adad, S. Lindenbaum, J.W. Lorimer, A.N. Paruta, R. Piekos, M. Salomon, Introduction to the series on solubility of solids in liquids: subseries on pharmaceuticals, in: 4-Aminobenzenesulfonamides, Elsevier, Rhode Island, 1989, pp. 1-523. [ Links ]

2. S. Mondal, S. Malakar, Synthesis of sulfonamide and their synthetic and therapeutic applications: Recent advances, Tetrahedron, 76, 131662 (2020). [ Links ]

3. E.N. Krylov, M.S. Gruzdev, U.V. Chervonova, L.V. Virzum, D. Sarkar, Synthesis, reactivity, acidic and pharmaceutical properties of sulphonamides, in: Sulfonamides: An Overview, edited by D. Sarkar, Nova, Odisha, 2020. [ Links ]

4. D.R. Delgado, G.A. Rodríguez, F. Martínez, Thermodynamic study of the solubility of sulfapyridine in some ethanol + water mixtures, J. Mol. Liq ., 177, 156161 (2013). [ Links ]

5. D.R. Delgado, O. Bahamón-Hernandez, N.E. Cerquera, C.P. Ortiz, F. Martínez, E. Rahimpour, A. Jouyban, W.E. Acree, Jr., Solubility of sulfadiazine in (acetoni-trile + methanol) mixtures: Determination, correlation, dissolution thermodynamics and preferential solvation, J. Mol. Liq ., 322, 114979 (2021). [ Links ]

6. D.R. Delgado, O.A. Almanza, F. Martínez, M.A. Peña, A. Jouyban, W.E. Acree, Jr. , Solution thermodynamics and preferential solvation of sulfamethazine in (methanol + water) mixtures, J. Chem. Thermodyn ., 97, 264-276 (2016). [ Links ]

7. D.R. Delgado, F. Martínez, Solution thermodynamics and preferential solvation of sulfamerazine in methanol + water mixtures, J. Solut. Chem ., 44, 360-377 (2015). [ Links ]

8. D.R. Delgado, F. Martínez, Solubility and preferential solvation of sulfadiazine in methanol + water mixtures at several temperatures, Fluid Phase Equilib ., 379, 128-138 (2014). [ Links ]

9. D.R. Delgado, D.I. Caviedes-Rubio, C.P. Ortiz, Y.L. Parra-Pava, M.Á. Peña, A. Jouyban, S.N. Mirheydari, F. Martínez, W.E. Acree, Jr. , Solubility of sulphadiazine in (acetonitrile + water) mixtures: measurement, correlation, thermodynamics and preferential solvation, Phys. Chem. Liq ., 58, 381-396 (2020). [ Links ]

10. A.M. Cruz-González, M.S. Vargas-Santana, C.P. Ortiz, N.E. Cerquera, D.R. Delgado, F. Martínez, A. Jouyban, W.E. Acree, Jr., Solubility of sulfadiazine in (ethylene glycol + water) mixtures: Measurement, correlation, thermodynamics and preferential solvation, J. Mol. Liq ., 323, 115058 (2021). [ Links ]

11. K. Kodide, P. Asadi, J. Thati, Solubility and thermodynamic modeling of sulfanilamide in 12 mono solvents and 4 binary solvent mixtures from 278.15 to 318.15 K, J. Chem. Eng. Data, 64, 5196-5209 (2019). [ Links ]

12. F. Martínez, A. Gómez, Thermodynamic study of the solubility of some sulfonamides in octanol, water, and the mutually saturated solvents, J. Solut. Chem ., 30, 909-923, (2001). [ Links ]

13. F. Martínez, C.M. Ávila, A. Gómez, Thermodynamic study of the solubility of some sulfonamides in cyclohexane, J. Braz. Chem. Soc ., 14, 803-808 (2003). [ Links ]

14. A. Romdhani, F. Martínez, O.A. Almanza, M.A. Peña, A. Jouyban, W.E. Acree, Solubility of sulfacetamide in (ethanol + water) mixtures: Measurement, correlation, thermodynamics, preferential solvation and volumetric contribution at saturation, J. Mol. Liq ., 290, 111219 (2019). [ Links ]

15. J.H. Blanco-Márquez, Y.A. Quigua-Medina, J.D. García-Murillo, J.K. Castro-Camacho, C.P. Ortiz, N.E. Cerquera, D.R. Delgado, Thermodynamic analysis and applications of the Abraham solvation parameter model in the study of the solubility of some sulfonamides, Rev. Colomb. Cienc. Quím. Farm ., 49, 234-255 (2020). [ Links ]

16. J.H. Blanco-Márquez, D.I. Caviedes Rubio, C.P. Ortiz, N.E. Cerquera, F. Martínez, D.R. Delgado, Thermodynamic analysis and preferential solvation of sulfa-methazine in acetonitrile + water cosolvent mixtures, Fluid Phase Equilib ., 505, 112361 (2020). [ Links ]

17. J.H. Blanco-Márquez, C.P. Ortiz, N.E. Cerquera, F. Martínez, A. Jouyban, D.R. Delgado, Thermodynamic analysis of the solubility and preferential solvation of sulfamerazine in (acetonitrile + water) cosolvent mixtures at different temperatures, J. Mol. Liq ., 293, 111507 (2019). [ Links ]

18. R.E. Cárdenas, L.E. Tinoco, D.M. Galindres, A. Beltrán, C.D. Oviedo, J. Osorio, Prediction of sulfadiazine solubility in some cosolvent mixtures using non-ideal solution models, Rev. Colomb. Cienc. Quím. Farm ., 49, 822-842 (2020). [ Links ]

19. A. Aydi, I. Dali, K. Ghachem, A.Z. Al-Khazaal, D.R. Delgado, L. Kolsi, Solubility of Hydroxytyrosol in binary mixture of ethanol + water from (293.15 to 318.15) K: Measurement, correlation, dissolution thermodynamics and preferential solvation, Alex. Eng. J., 60, 905-914 (2021). [ Links ]

20. M.d.M. Muñoz, D.R. Delgado, M.Á. Peña, A. Jouyban, F. Martínez, Solubility and preferential solvation of sulfadiazine, sulfamerazine and sulfamethazine in propylene glycol + water mixtures at 298.15 K, J. Mol. Liq ., 204, 132-136 (2015). [ Links ]

21. Z.J. Cárdenas, D.M. Jiménez, G.A. Rodríguez, D.R. Delgado, F. Martínez, M. Khoubnasabjafari, A. Jouyban, Solubility of methocarbamol in some cosolvent + water mixtures at 298.15 K and correlation with the Jouyban-Acree model, J. Mol. Liq ., 188, 162-166 (2013). [ Links ]

22. D.M. Cristancho, D.R. Delgado, F. Martínez, Meloxicam solubility in ethanol + water mixtures according to the extended Hildebrand solubility approach, J. Solut. Chem ., 42, 1706-1716 (2013). [ Links ]

23. D.R. Delgado, E.M. Mogollon-Waltero, C.P. Ortiz, M. Peña, O.A. Almanza, F. Martínez, A. Jouyban, Enthalpy-entropy compensation analysis of the triclocar-ban dissolution process in some {1,4-dioxane (1) + water (2)} mixtures, J. Mol. Liq ., 271, 522-529 (2018). [ Links ]

24. D.J.W. Grant, M. Mehdizadeh, A.H.L. Chow, J.E. Fairbrother, Non-linear van't Hoff solubility-temperature plots and their pharmaceutical interpretation, Int. J. Pharm ., 18, 25-38 (1984). [ Links ]

25. A.R. Holguín, D.R. Delgado, F. Martínez, Indomethacin solubility in pro-pylene glycol + water mixtures according to the Extended Hildebrand Solubility Approach, Lat. Am. J. Pharm ., 31, 720-726 (2012). [ Links ]

26. D.R. Delgado, M.Á. Peña, F. Martínez, Preferential solvation of some sulfonamides in 1,4-dioxane + water co-solvent mixtures at 298.15 K according to the inverse Kirkwood-Buff integrals method, Rev. Acad. Colomb. Cienc. Exact. Fis. Nat ., 38, 104-114 (2014). [ Links ]

27. B.J. Boyd, C.A.S. Bergström, Z. Vinarov, M. Kuentz, J. Brouwers, P. Augustijns, M. Brandl, A. Bernkop-Schnürch, N. Shrestha, V. Préat, A. Müllertz, A. Bauer-Brandl, V. Jannin, Successful oral delivery of poorly water-soluble drugs both depends on the intraluminal behavior of drugs and of appropriate advanced drug delivery systems, Eur. J. Pharm. Sci ., 137, 104967 (2019). [ Links ]

28. S. Kalepu, V. Nekkanti, Insoluble drug delivery strategies: Review of recent advances and business prospects, Acta Pharm. Sin. B, 5, 442-453 (2015). [ Links ]

29. Q. Bu, B. Wang, J. Huang, S. Deng, G. Yu, Pharmaceuticals and personal care products in the aquatic environment in China: A review, J. Hazard. Mater ., 262, 189-211 (2013). [ Links ]

30. S.V. Blokhina, M.V. Ol'khovich, A.V. Sharapova, I.B. Levshin, G.L. Perlovich, Thermodynamic insights to solubility and lipophilicity of new bioactive hybrids triazole with thiazolopyrimidines, J. Mol. Liq ., 114662 (2020), doi: 10.1016/j.molliq.2020.114662. [ Links ]

31. A. Noubigh, M. Habib-Oueslati, Measurement and modeling of the solubility of vanillin constituent of olive mill wastewater in binary water + ethanol solvents mixtures between 278.15 K and 308.15 K, Aust. J. Basic Appl. Sci ., 8, 396-403 (2014). [ Links ]

32. R. Heryanto, M. Hasan, E. Chan-Abdullah, A. Cahyo-Kumoro, Solubility of stearic acid in various organic solvents and its prediction using non-ideal solution models, ScienceAsia, 33, 469-472 (2007). [ Links ]

33. Q. Jia, D. Lei, S. Zhang, J. Zhang, N. Liu, K. Kou, Solubility measurement and correlation for HNIW»TNT co-crystal in nine pure solvents from T = (283.15 to 318.15) K, J. Mol. Liq ., 114592 (2020), doi: 10.1016/j.molliq.2020.114592. [ Links ]

34. D. Yang, L. Fu, D. Shi, J. Li, Q. Zhang, Solubility of 3,7,9,11-tetraoxo-2,4,6,8,10-pentaaza[3.3.3] propellane (TOPAP) in different pure solvents at temperatures between 273.15 and 318.15 K, J. Chem. Eng. Data, 61, 3277-3285 (2016). [ Links ]

35. M.A.M. Khan, L. Ahrné, J.C. Oliveira, F.A.R. Oliveira, Prediction of water and soluble solids concentration during osmotic dehydration of mango, Food Bio-prod. Process ., 86, 7-13 (2008). [ Links ]

36. M. Svárd, A.C. Rasmuson, (Solid + liquid) solubility of organic compounds in organic solvents - Correlation and extrapolation, J. Chem. Thermodyn ., 76, 124133 (2014). [ Links ]

37. A.M. Romero-Nieto, D.I. Caviedes-Rubio, J. Polania-Orozco, N.E. Cerquera, D.R. Delgado, Temperature and cosolvent composition effects in the solubility of methylparaben in acetonitrile + water mixtures, Phys. Chem. Liq ., 58, 722735 (2020). [ Links ]

38. A.M. Romero Nieto, N.E. Cerquera, D.R. Delgado, Measurement and correlation of solubility of ethylparaben in pure and binary solvents and thermodynamic properties of solution, Rev. Colomb. Cienc. Quím. Farm ., 48, 332-347 (2019). [ Links ]

39. A. Ksiazczak, J.J. Kosinski, Vapour pressure of binary, three-phase (S-L-V) systems and solubility, Fluid Phase Equilib ., 44, 211-236 (1988). [ Links ]

40. A. Ksiazczak, K. Moorthi, I. Nagata, Solid-solid transition and solubility of even n-alkanes, Fluid Phase Equilib ., 95, 15-29 (1994). [ Links ]

41. D.R. Delgado, F. Martínez, Solubility and solution thermodynamics of sulfamerazine and sulfamethazine in some ethanol + water mixtures, Fluid Phase Equilib ., 360, 88-96 (2013). [ Links ]

42. D.R. Delgado, F. Martínez, Solubility and solution thermodynamics of some sulfonamides in 1-propanol + water mixtures, J. Solut. Chem ., 43, 836-852 (2014). [ Links ]

DISCLOSURE STATEMENT No potential conflict of interest was reported by the authors.

HOW TO CITE THIS ARTICLE L.E. Tinoco, D.M. Galindres, J. Osorio, R.E. Cárdenas, Prediction of sulfamerazine and sulfamethazine solubility in some cosolvent mixtures using non-ideal solution models, Rev. Colomb. Cienc. Quím. Farm., 50(1), 292-313 (2021).

Received: January 06, 2021; Revised: January 15, 2021; Accepted: January 18, 2021

Creative Commons License This is an open-access article distributed under the terms of the Creative Commons Attribution License