SciELO - Scientific Electronic Library Online

 
vol.42 número1Convergencia semilocal de un método de Newton de dos pasosClases de álgebras de Lie y subálgebras de Cartan índice de autoresíndice de materiabúsqueda de artículos
Home Pagelista alfabética de revistas  

Servicios Personalizados

Revista

Articulo

Indicadores

Links relacionados

  • En proceso de indezaciónCitado por Google
  • No hay articulos similaresSimilares en SciELO
  • En proceso de indezaciónSimilares en Google

Compartir


Revista Colombiana de Matemáticas

versión impresa ISSN 0034-7426

Rev.colomb.mat. v.42 n.1 Bogotá ene./jun. 2008

 

Source terms identification for time fractional diffusion equation

Identificación de términos fuente en ecuaciones de difusión en las que la derivada con respecto al tiempo es fraccional

DIEGO A. MURIO1, CARLOS E. MEJÍA2

1University of Cincinnati, Ohio, USA. Email: diego@dmurio.csm.uc.edu
2University of Cincinnati, Ohio, USA. Email: cemejia@unal.edu.co


Abstract

We introduce a regularization technique for the approximate reconstruction of spatial and time varying source terms using the observed solutions of the forward time fractional diffusion problem on a discrete set of points. The numerical method is based on computation of the derivatives of adaptive filtered versions of the noisy data by discrete mollification.

Key words: Ill-Posed Problems, heat source identification, Caputofractional derivatives, time fractional diffusion equation, mollification techniques.


2000 Mathematics Subject Classification: 65M06, 65M12, 65M30, 65M32.

Resumen

Presentamos una técnica de regularización para la reconstrucción numérica de términos fuente dependientes de espacio y tiempo a partir de aproximaciones de la solución del problema directo en un conjunto discreto de puntos. El método se basa en el cálculo de derivadas de versiones de los datos aproximados que se obtienen con el filtro adaptativo denominado molificación discreta.

Palabras clave: Problemas mal condicionados, identificación de una fuente de calor, derivadas fraccionales de Caputo, ecuación de difusión con derivadafraccional en la dirección del tiempo, técnicas de molificación.


Texto completo disponible en PDF


References

[1] Acosta, C. & Mejía, C., `Stabilization of explicit methods for convection diffusion equations by discrete mollification´, Computers Math. Applic. 55, (2008), 368-380.         [ Links ]

[2] Agrawal, O., `Solution for a fractional diffusion-wave equation defined in a bounded domain´, Nonlinear Dynamics 29, (2002), 145-155.         [ Links ]

[3] Cannon, J. & DuChateau, P., `Inverse problems for an unknown source in the heat equation´, Mathematical Analysis and Applications, 75, (1980), 465-485.         [ Links ]

[4] Caputo, M., Elasticà e Dissipazione, Zanichelli, Bologna, 1969.         [ Links ]

[5] Chavent, G. & Jaffre, J., Mathematical Models and Finite Elements for Reservoir Simulation, North Holland, Amsterdam, 1986.         [ Links ]

[6] Chavez, A., `Fractional diffusion equation to describe Lèvy flights´, Phys. Lett. 239, A (1998), 13-16.         [ Links ]

[7] Chen, C-M., Liu, F., Turner, I. & Anh, V., `A fourier method for the fractional diffusion equation describing sub-diffusion´, J. Comput. Phys., (2007). doi: 10.1016/j.jcp.2007.05.012.         [ Links ]

[8] Coles, C. & Murio, D., `Simultaneous space diffusivity and source term reconstruction in 2D IHCP´, Computers Math. Applic. 42, (2001), 1549-1564.         [ Links ]

[9] Diethelm, K., Ford, N., Freed, A. & Luchko, Y., `Algorithms for the fractional calculus: a selection of numerical methods´, Computer Methods in Applied Mechanics and Engineerin 194, g (2005), 743-773.         [ Links ]

[10] Eldén, L., `Solving an inverse heat conduction problem by a ``method of lines''´, Journal of Heat Transfer 119, (1997), 406-412.         [ Links ]

[11] Ewing, R. & Lin, T., Parameter identification problems in single-phase and two-phase flow, Birkhauser Verlag, Basel, 1989. International Series of Numerical Mathematics, 91.         [ Links ]

[12] Ewing, R., Lin, T. & Falk, R., Inverse and Ill-Posed Problems, Academic Press, Orlando, (1987), chapter Inverse and ill-posed problems in reservoir simulation, p. 483-497. H. Engl and C. Groetsch eds..         [ Links ]

[13] Langlands, T. & Henry, B., `The accuracy and stability of an implict solution method for the fractional diffusion equation´, Journal of Computational Physics 205, (2005), 719-736.         [ Links ]

[14] Liu, F., Anh, V. & Turner, I., `Numerical solution of the space fractional Fokker-Planck equation´, JCAM 166, (2004), 209-219.         [ Links ]

[15] Mainardi, F., Fractals and Fractional Calculus Continuum Mechanics, Springer Verlag, New York, (1997), chapter Calculus: some basic problems in continuum and statistical mechanics, p. 291-348. A. Carpinteri and F. Mainardi eds..         [ Links ]

[16] Mainardi, F., Luchko, Y. & Pagnini, G., `The fundamental solution of the space-time fractional diffusion equation´, Fractional Calculus and Applied Analysis 4, (2001), 153-192.         [ Links ]

[17] Meerschaert, M. & Tadjeran, C., `Finite difference approximations for fractional advection-dispersion flow equations´, JCAM 172, (2004), 65-77.         [ Links ]

[18] Mejía, C. & Murio, D., `Numerical solution of the generalized IHCP by discrete mollification´, Computers Math. Applic 32, 2 (1996), 33-50.         [ Links ]

[19] Murio, D., The Mollification Method and the Numerical Solution of Ill-Posed Problems, Wiley (Interscience), New York, 1993.         [ Links ]

[20] Murio, D., Inverse Engineering Handbook, CRC Press, Boca Raton, Florida, (2002), chapter Mollification and Space Marching. K. Woodbury ed..         [ Links ]

[21] Murio, D., `On the stable numerical evaluation of Caputo fractional derivatives´, Computers and Mathematics with Applications 51, (2006), 1539-1550.         [ Links ]

[22] Murio, D., Stable numerical evaluation of Grünwald-Letnikov fractional derivatives, `Proceedings of Inverse Problems, Design and Optimization Symposium´, (2007a), Vol. I, Florida International University, Florida, p. 44-48.         [ Links ]

[23] Murio, D., Implicit finite difference approximation for time fractional diffusion equations. Submitted.         [ Links ]

[24] Murio, D., Mejía, C. & Zhan, S., `Discrete mollification and automatic numerical differentiation´, Computers Math. Applic. 35, 5 (1998), 1-16.         [ Links ]

[25] Nanda, A. & Das, P., `Determination of the source term in the heat conduction equation´, Inverse Problems 12, (1996), 325-339.         [ Links ]

[26] Oldham, K. & Spanier, J., The Fractional Calculus, Academic Press, New York, 1974.         [ Links ]

[27] Podlubny, I., Fractional Differential Equations, Academic Press, New York, 1999.         [ Links ]

[28] Samko, S., Kilbas, A. & Marichev, O., Fractional Integrals and Derivatives, Gordon and Breach Sciences Publishers, London, 1993.         [ Links ]

[29] Shen, S., Liu, F., Anh, V. & Turner, I., `Detailed analysis of an explicit conservative difference approximation for the time fractional diffusion equation´, J. Appl. Math. Computing 22, 3 (2006), 1-19.         [ Links ]

[30] Wheeler, M., ed., Numerical Simulations in Oil Recovery, Springer-Verlag, New York, 1988.         [ Links ]

[31] Yi, S. & Murio, D., Source terms identification for the diffusion equation, `Proceedings Fourth International Conference on Inverse Problems in Engineering´, (2002), Vol. I, Rio de Janeiro, p. 100-107.         [ Links ]

[32] Yuste, S. & Acedo, L., `An explicit finite difference method and a new von Neumann-type stability analysis for fractional diffusion equations´, J. Numer. Anal. SIAM 42, 5 (2005), 1862-1874.         [ Links ]

[33] Zhan, S. & Murio, D., `Surface fitting and numerical gradient computations by discrete mollification´, Computers and Mathematics with Applications 37, 5 (1999), 85-102.         [ Links ]

[34] Zhuang, P. & Liu, F., `Implicit difference approximation for the time fractional diffusion equation´, J. Appl. Math. Computing 22, 3 (2006), 87-99.         [ Links ]

[35] Zhuang, P., Liu, F., Anh, V. & Turner, I., New solution and analytical techniques of the implicit numerical methods for the anomalous sub-diffusion equation. SIAM J. Numer. Anal. to appear.         [ Links ]

(Recibido en agosto de 2007. Aceptado en enero de 2008)

Este artículo se puede citar en LaTeX utilizando la siguiente referencia bibliográfica de BibTeX:

@ARTICLE{RCMv42n1a03,
    AUTHOR  = {Murio, Diego A. and Mejía, Carlos E.},
    TITLE   = {{Source terms identification for time fractional diffusion equation}},
    JOURNAL = {Revista Colombiana de Matemáticas},
    YEAR    = {2008},
    volume  = {42},
    number  = {1},
    pages   = {25-46}
}

Creative Commons License Todo el contenido de esta revista, excepto dónde está identificado, está bajo una Licencia Creative Commons