SciELO - Scientific Electronic Library Online

 
vol.47 issue2On Weak Solvability of Boundary Value Problems for Elliptic Systems author indexsubject indexarticles search
Home Pagealphabetic serial listing  

Services on Demand

Journal

Article

Indicators

Related links

  • On index processCited by Google
  • Have no similar articlesSimilars in SciELO
  • On index processSimilars in Google

Share


Revista Colombiana de Matemáticas

Print version ISSN 0034-7426

Rev.colomb.mat. vol.47 no.2 Bogotá July/Dec. 2013

 

Field of Moduli and Generalized Fermat Curves

Cuerpo de moduli y curvas de Fermat generalizadas

RUBEN A. HIDALGO1, SEBASTIÁN REYES-CAROCCA2, MARÍA ELISA VALDÉS3

1Universidad Técnica Federico Santa María, Valparaíso, Chile. Email: ruben.hidalgo@usm.cl
2Universidad Autónoma de Madrid, Madrid, España. Email: sebastian.reyes@uam.es
3Universidad de Concepción, Concepción, Chile. Email: mariaevaldes@udec.cl


Abstract

A generalized Fermat curve of type (p,n) is a closed Riemann surface S admitting a group H \cong Zpn of conformal automorphisms with S/H being the Riemann sphere with exactly n+1 cone points, each one of order p. If (p-1)(n-1) ≥ 3, then S is known to be non-hyperelliptic and generically not quasiplatonic. Let us denote by AutH(S) the normalizer of H in Aut(S). If p is a prime, and either (i) n=4 or (ii) n is even and AutH(S)/H is not a non-trivial cyclic group or (iii) n is odd and AutH(S)/H is not a cyclic group, then we prove that S can be defined over its field of moduli. Moreover, if n ε {3,4}, then we also compute the field of moduli of S.

Key words: Algebraic curves, Riemann surfaces, Field of moduli, Field of definition.


2000 Mathematics Subject Classification: 14H37, 14H10, 14H45, 30F10.

Resumen

Una curva de Fermat generalizada de tipo (p,n) es una superficie de Riemann cerrada S la cual admite un grupo H \cong Zpn de automorfismos conformales de manera que S/H sea de género cero y tenga exactamente n+1 puntos cónicos, cada uno de orden p. Si (p-1)(n-1) ≥ 3, entonces se sabe que S no es hiperelíptica y genéricamente no es casiplatónica. Denotemos por AutH(S) el normalizador de H en Aut(S). Si p es primo y tenemos que (i) n=4 o bien (ii) n es par y AutH(S)/H no es un grupo cíclico no trivial o bien (iii) n es impar y AutH(S)/H no es un grupo cíclico, entonces verificamos que S se puede definir sobre su cuerpo de moduli. Más aún, si n ε {3,4}, entonces determinamos tal cuerpo de moduli.

Palabras clave: Curvas algebraicas, superficies de Riemann, cuerpo de moduli, cuerpo de definición.


Texto completo disponible en PDF


References

[1] M. Artebani and S. Quispe, `Fields of Moduli and Fields of Definition of Odd Signature Curves´, Archiv der Mathematik 99, (2012), 333-343.         [ Links ]

[2] A. F. Beardon, The Geometry of Discrete Groups, Vol. 91 of Graduate Texts in Mathematics, Springer-Verlag, New York, USA, 1983.         [ Links ]

[3] A. Carocca, V. González-Aguilera, R. A. Hidalgo, and R. E. Rodríguez, `Generalized Humbert Curves´, Israel Journal of Math. 164, (2008), 165-192.         [ Links ]

[4] P. Dèbes and M. Emsalem, `On Fields of Moduli of Curves´, J. of Algebra 211, (1999), 42-56.         [ Links ]

[5] C. J. Earle, On the Moduli of Closed Riemann Surfaces with Symmetries, `Advances in the Theory of Riemann Surfaces´, (1971), Princeton Univ. Press, Princeton, p. 119-130.         [ Links ]

[6] H. M. Farkas and I. Kra., Riemann Surfaces, Vol. 71 of Graduate Text in Math., second edn, Springer-Verlag, 1991.         [ Links ]

[7] Y. Fuertes, G. González, R. A. Hidalgo, and M. Leyton, `Automorphism Group of Generalized Fermat Curves of Type (k,3)´, Journal of Pure and Applied Algebra 217, (2013), 1791-1806.         [ Links ]

[8] G. González, R. A. Hidalgo, and M. Leyton, `Generalizated Fermat Curves´, Journal of Algebra 321, (2009), 1643-1660.         [ Links ]

[9] A. Grothendieck, Esquisse d'un programme, `Geometric Galois actions 1. around Grothendieck's Esquisse d'un Programme´, (1997), Vol. 242 of London Mathematical Society Lecture Note Series, Cambridge University Press, Cambridge, p. 5-48.         [ Links ]

[10] H. Hammer and F. Herrlich, `A Remark on the Moduli Field of a Curve´, Arch. Math. 81, (2003), 5-10.         [ Links ]

[11] R. A. Hidalgo, `Non-Hyperelliptic Riemann Surfaces with Real Field of Moduli but not Definable over the Reals´, Archiv der Mathematik 93, (2009a), 219-222.         [ Links ]

[12] R. A. Hidalgo, `Non-Hyperelliptic Riemann Surfaces with Real Field of Moduli but not Definable over the Reals´, Archiv der Mathematik 93, (2009b), 219-222.         [ Links ]

[13] R. A. Hidalgo, `Erratum to: Non-hyperelliptic Riemann Surfaces with Real Field of Moduli but not Definable over the Reals´, Archiv der Math. 98, (2012), 449-451.         [ Links ]

[14] R. A. Hidalgo and M. Leyton, `On Uniqueness of Automorphisms Groups of Riemann Surfaces´, Revista Matematica Iberoamericana 23, 3 (2007), 793-810.         [ Links ]

[15] R. A. Hidalgo and S. Quispe, Fields of Moduli of Curves, Preprint, 2013.         [ Links ]

[16] R. A. Hidalgo and S. Reyes-Carocca, `Fields of Moduli of Classical Humbert Curves´, Quarterly Journal of Math. 63, 4 (2012), 919-930.         [ Links ]

[17] B. Huggins, `Fields of Moduli of Hyperelliptic Curves´, Math. Res. Lett. 14, 2 (2007), 249-262.         [ Links ]

[18] S. Koizumi, `Fields of Moduli for Polarized Abelian Varieties and for Curves´, Nagoya Math. J. 48, (1972), 37-55.         [ Links ]

[19] A. Kontogeorgis, `Field of Moduli versus Field of Definition for Cyclic Covers of the Projective Line´, J. de Theorie des Nombres de Bordeaux 21, (2009), 679-692.         [ Links ]

[20] B. Maskit, Kleinian Groups, GMW, Springer-Verlag, 1987.         [ Links ]

[21] J. Quer and G. Cardona, `Fields of Moduli and Field of Definition for Curves of Genus 2. Computational Aspects of Algebraic Curves´, Lecture Notes Series Comput. 13, (2005), 71-83.         [ Links ]

[22] S. Reyes-Carocca, `Field of Moduli of Generalized Fermat Curves´, Quarterly Journal Math. 63, 2 (2012), 467-475.         [ Links ]

[23] G. Shimura., `On the Field of Rationality for an Abelian Variety´, Nagoya Math. J. 45, (1972), 167-178.         [ Links ]

[24] A. Weil, `The field of definition of a variety´, Amer. J. Math. 78, (1956), 509-524.         [ Links ]

[25] J. Wolfart, ABC for polynomials, dessins d'enfants and uniformization-a survey, `Elementare und Analytische Zahlentheorie´, (2006), Vol. 20, Schr. Wiss. Ges. Johann Wolfgang Goethe Univ. Frankfurt am Main, Franz Steiner Verlag Stuttgart, Stuttgart, p. 313-345.         [ Links ]


(Recibido en julio de 2013. Aceptado en septiembre de 2013)

Este artículo se puede citar en LaTeX utilizando la siguiente referencia bibliográfica de BibTeX:

@ARTICLE{RCMv47n2a07,
    AUTHOR  = {Hidalgo, Ruben A. and Reyes-Carocca, Sebastián and Valdés, María Elisa},
    TITLE   = {{Field of Moduli and Generalized Fermat Curves}},
    JOURNAL = {Revista Colombiana de Matemáticas},
    YEAR    = {2013},
    volume  = {47},
    number  = {2},
    pages   = {205--221}
}