Services on Demand
Journal
Article
Indicators
- Cited by SciELO
- Access statistics
Related links
- Cited by Google
- Similars in SciELO
- Similars in Google
Share
Revista Colombiana de Matemáticas
Print version ISSN 0034-7426
Rev.colomb.mat. vol.48 no.2 Bogotá July/Dec. 2014
https://doi.org/10.15446/recolma.v48n2.54122
Doi: http://dx.doi.org/10.15446/recolma.v48n2.54122
1Universidad del Norte, Barranquilla, Colombia. Email: jdelacruz@uninorte.edu.co
2Universidad del Norte, Barranquilla, Colombia. Email: isgutier@uninorte.edu.co
3Universidad del Atlántico, Barranquilla, Colombia. Email: jorgerobinson@mail.uniatlantico.edu.co
En este artículo presentamos un resumen de algunos de los resultados más importantes sobre códigos lineales binarios y autoduales con un automorfismo de orden primo impar que se han establecido en los últimos años. Además por medio de un automorfismo de orden 59 construimos 24 nuevos [120,60]-códigos binarios autoduales, doblemente pares optimales.
Palabras clave: Códigos lineales, códigos binarios, códigos autoduales, códigos doblemente pares, códigos extremales, códigos optimales, automorfismos de códigos.
2000 Mathematics Subject Classification: 53C21, 53C42.
In this paper we present a survey of the most important results on binary self-dual linear codes with an automorphism of odd prime order, which have been established in recent years. Additionally, through an automorphism of order 59, we show that there are at least 24 new binary, self dual doubly even optimal [120,60]-codes.
Key words: Linear codes, Binary codes, Self dual codes, Doubly even codes, Extremal codes, Automorphisms.
Texto completo disponible en PDF
Referencias
[1] J. L. Alperin and R. B. Bell, Groups and Representations, 2 edn, Springer-Verlag, New York, USA, [ Links ] 1995.
[2] E. F. Assmus, H. F. Mattson, and R. Turyn, 'Research to Develop the Algebraic Theory of Codes', Air force Cambridge Res. Lab., Bedford, MA, Report AFCRL-67-0365, (1967), I1-XI4. [ Links ]
[3] M. Borello, 'The Automorphism Group of a Self-Dual [72,36,16] Code is not an Elementary Abelian Group of Order 8', Finite Fields and Their Applications 25, (2014), [ Links ] 1-7.
[4] S. Bouyuklieva, 'On the Automorphism Group of a Doubly-Even (72, 32, 16) Code', IEEE Transactions on Information Theory 50, (2004), 544-547. [ Links ]
[5] S. Bouyuklieva, J. D. l. Cruz, and W. Willems, 'On the Automorphism Group of a Binary Self-Dual [120,60,24] Code', AAECC 24, (2013). [ Links ]
[6] J. H. Conway and N. J. A. Sloane, 'A New Upper Bound on the Minimal Distance of Self-Dual Codes', IEEE Transactions on Information Theory 36, 6 (1990). [ Links ]
[7] J. D. l. Cruz, Über die Automorphismengruppe der Extremaler Codes der Längen 96 Und 120, Ph.D. dissertation, Otto-von-Guericke Universität, Magdeburg - Germany, [ Links ] 2012.
[8] J. D. l. Cruz, 'On Extremal Self-Dual Codes of Length 120', Design, Codes and Cryptography, (2013). (to appear) [ Links ]
[9] J. D. l. Cruz and W. Willems, 'On Extremal Self-Dual Code of Length 9', IEEE Transactions on Information Theory 6, 57 (2011), 6820-6828. [ Links ]
[10] A. M. Gleason, 'Weight Polynomials of Codes and the MacWilliams Identities', Actes Congrès Intern. de Math. Gauthier-Villars, Paris 3, (1971), 211-215. [ Links ]
[11] M. Grassl, Bounds on the Minimum Distance of Linear Codes and Quantum Codes, http://www.codetables.de, (0000). [ Links ]
[12] W. C. Huffman, 'Automorphisms of Codes with Applications to Extremal Doubly Even Codes of Length 48', IEEE Transactions on Information Theory 28, (1982), 511-521. [ Links ]
[13] W. C. Huffman and V. Pless, Fundamentals of Error-Correcting Codes, Cambridge University Press, Cambridge, UK, [ Links ] 2003.
[14] I. M. Isaacs, Finite Group Theory, Vol. 92, AMS, Providence, Graduate Studies in Math, [ Links ] 2008.
[15] X. Ma, 'Nonexistence of Extremal Doubly Even Self-Dual Codes With Large Length', Discrete Math. 185, (1998), 265-274. [ Links ]
[16] C. L. Mallows and N. J. A. Sloane, 'An Upper Bound for Self-Dual Codes', Information and Control 22, (1973), 188-200. [ Links ]
[17] E. M. Rains, 'Shadow Bounds for Self-Dual Codes', IEEE Transactions on Information Theory 44, (1998), 134-139. [ Links ]
[18] N. J. A. Sloane, 'Is There a [72, 36], D16 Self-Dual Code?', IEEE Transactions on Information Theory 19, (1973), [ Links ] 251.
[19] V. Y. Yorgov, 'Binary Self-Dual Codes with Automorphisms of Odd Order', Probl. Pered. Inform. 19, (1983), 11-24. [ Links ]
[20] V. Yorgov and D. Yorgov, 'The Automorphism Group of a Self Dual Binary [72,36,16] Code does not Contain Z4', preprint, arXiv:1310.2570v2, [ Links ] 2013.
[21] R. Yorgova and A. Wassermann, 'Binary Self-Dual Codes with Automorphisms of Order 23', Des. Codes and Cryptography 48, (2008), 155-164. [ Links ]
[22] S. Zhang, 'On the Nonexistence of Extremal Self-Dual Codes', Discrete Appl. Math. 91, (1999), 277-286. [ Links ]
Este artículo se puede citar en LaTeX utilizando la siguiente referencia bibliográfica de BibTeX:
@ARTICLE{RCMv48n2a02,
AUTHOR = {de la Cruz, Javier and Gutierrez, Ismael and Robinson, Jorge},
TITLE = {{Códigos autoduales con un automorfismo de orden primo impar}},
JOURNAL = {Revista Colombiana de Matemáticas},
YEAR = {2014},
volume = {48},
number = {2},
pages = {135--163}
}