SciELO - Scientific Electronic Library Online

vol.48 issue2A Generalization for the Riesz p-VariationMultiplicative Relaxation with respect to Thompson's Metric author indexsubject indexarticles search
Home Pagealphabetic serial listing  

Services on Demand




Related links

  • On index processCited by Google
  • Have no similar articlesSimilars in SciELO
  • On index processSimilars in Google


Revista Colombiana de Matemáticas

Print version ISSN 0034-7426

Rev.colomb.mat. vol.48 no.2 Bogotá July/Dec. 2014 


The Problem of the First Passage Time for Some Elliptic Pseudodifferential Operators Over the p-Adics

El problema del primer retorno para algunos operadores pseudo-diferenciables elípticos sobre los p-ádicos


1Centro de Investigación y de Estudios Avanzados del I.P.N., México D.F, México. Email:


In this article we study the problem of the first passage time associated to certain elliptic pseudodifferential operators in dimensions 4 and 2 over the p-adics. This type of problems appeared in connection with certain models of complex systems.

Key words: Random walks, Diffusion, Dynamics of disordered systems, Relaxation of complex systems, p-Adic numbers, Non-archimean analysis.

2000 Mathematics Subject Classification: 82B41, 82C44, 26E30.


En este artículo se estudia el problema del primer retorno asociado a ciertos operadores pseudo-diferenciales elípticos en dimensiones 4 y 2 sobre los números p-ádicos. Este tipo de problemas está conectado con ciertos modelos de sistemas complejos.

Palabras clave: Caminatas aleatorias, difusión, sistemas dinámicos desordenados, relajación en sistemas complejos, números p-ádicos, análisis no Arquimediano.

Texto completo disponible en PDF


[1] S. Albeverio, A. Y. Khrennikov, and V. M. Shelkovich, Theory of p-Adic Distributions: Linear and Nonlinear Models, Cambridge University Press,         [ Links ] 2010.

[2] V. A. Avetisov and A. K. Bikulov, 'On the Ultrametricity of the Fluctuation Dynamic Mobility of Protein Molecules', Tr. Mat. Inst. Steklova 265, (2009), 75-81. (Russian)         [ Links ]

[3] V. A. Avetisov, A. K. Bikulov, and S. V. Kozyrev, 'Description of Logarithmic Relaxation by a Model of a Hierarchical Random Walk', Dokl. Akad. Nauk 368 2, (1999), 164-167. (Russian)         [ Links ]

[4] V. A. Avetisov, A. K. Bikulov, and V. A. Osipov, 'p-Adic Description of Characteristic Relaxation in Complex Systems', J. Phys. A 36 15, (2003), 4239-4246.         [ Links ]

[5] V. A. Avetisov, A. K. Bikulov, and A. P. Zubarev, 'First Passage Time Distribution and the Number of Returns for Ultrametric Random Walks', J. Phys. 42, (2009),         [ Links ] 18.

[6] O. F. Casas-Sánchez and W. A. Zúñiga-Galindo, 'Riesz Kernels and Pseudodifferential Operators Attached to Quadratic Forms Over p-Adic Fields', p-Adic Numbers, Ultrametric Anal. Appl. 5, 3 (2013), 177-193.         [ Links ]

[7] L. F. Chacón-Cortes and W. A. Zúñiga-Galindo, 'Nonlocal Operators, Parabolic-Type Equations, and Ultrametric Random Walks', J. Math. Phys. 54, (2013).         [ Links ]

[8] B. Dragovich, A. Y. Khrennikov, S. V. Kozyrev, and I. V. Volovich, 'On p-Adic Mathematical Physics', p-Adic Numbers Ultrametric Anal Appl 1, (2009),         [ Links ] 1-17.

[9] E. B. Dynkin, Markov Processes, Vol. I, Springer-Verlag,         [ Links ] 1965.

[10] J. Galeano-Peñaloza and W. A. Zúñiga-Galindo, 'Pseudo-Differential Operators with Semi-Quasielliptic Symbols over p-Adic Fields', J. Math. Anal. Appl. 1, 386 (2012), 32-49.         [ Links ]

[11] W. Karwowski, 'Diffusion Processes With Ultrametric Jumps', Rep. Math. Phys. 60, (2007), 221-235.         [ Links ]

[12] A. Y. Khrennikov and S. V. Kozyrev, 'p-Adic Pseudodifferential Operators and Analytic Continuation of Replica Matrices', Theoret. and Math. Phys. 144, 2 (2005), 1166-1170.         [ Links ]

[13] J. Lörinczi, F. Hiroshima, and V. Betz, Feynman-Kac-Type Theorems and Gibbs Measures on Path Space: With Applications to Rigorous Quantum Field Theory, Vol. 34, Walter de Gruyter,         [ Links ] 2011.

[14] M. Mézard, G. Parisi, and M. A. Virasoro, 'Spin Glass Theory and Beyond', World Scientific, (1987).         [ Links ]

[15] K. A. N., Pseudo-Differential Equations and Stochastics over Non-Archimedean Fields, Marcel Dekker, Inc., New York,         [ Links ] 2001.

[16] E. Nelson, 'Feynman Integrals and the Schrödinger Equation', Journal of Mathematical Physics 5, 3 (1964), 332-343.         [ Links ]

[17] R. Rammal, G. Toulouse, and M. A. Virasoro, 'Ultrametricity for Physicists', Rev. Modern Phys. 58, (1986), 765-788.         [ Links ]

[18] M. H. Taibleson, Fourier Analysis on Local Fields, Princeton University Press,         [ Links ] 1975.

[19] V. S. Varadarajan, 'Path Integrals for a Class of p-Adic Schrödinger Equations', Lett. Math. Phys. 39, (1997), 97-106.         [ Links ]

[20] V. S. Vladimirov, I. V. Volovich, and E. I. Zelenov, p-Adic Analysis and Mathematical Physics, World Scientific,         [ Links ] 1994.

[21] W. A. Zúñiga-Galindo, 'Parabolic Equations and Markov Processes over p-Adic Fields', Potential Anal. 28, 2 (2008), 185-200.         [ Links ]

(Recibido en febrero de 2014. Aceptado en julio de 2014)

Este artículo se puede citar en LaTeX utilizando la siguiente referencia bibliográfica de BibTeX:

    AUTHOR  = {Chacón-Cortes, Leonardo Fabio},
    TITLE   = {{The Problem of the First Passage Time for Some Elliptic Pseudodifferential Operators Over the \boldsymbol{p}-Adics}},
    JOURNAL = {Revista Colombiana de Matemáticas},
    YEAR    = {2014},
    volume  = {48},
    number  = {2},
    pages   = {191--209}