SciELO - Scientific Electronic Library Online

 
vol.53 suppl.1Renormalisation via locality morphismsCyclic derivations, species realizations and potentials índice de autoresíndice de assuntospesquisa de artigos
Home Pagelista alfabética de periódicos  

Serviços Personalizados

Journal

Artigo

Indicadores

Links relacionados

  • Em processo de indexaçãoCitado por Google
  • Não possue artigos similaresSimilares em SciELO
  • Em processo de indexaçãoSimilares em Google

Compartilhar


Revista Colombiana de Matemáticas

versão impressa ISSN 0034-7426

Rev.colomb.mat. vol.53  supl.1 Bogotá dez. 2019  Epub 24-Mar-2020

https://doi.org/10.15446/recolma.v53nsupl.84013 

Artículos originales

A short survey on observability

Walter Ferrer Santos1  a 

1 Universidad de la República, Uruguay


Abstract:

The exploration of the notion of observability exhibits transparently the rich interplay between algebraic and geometric ideas in geometric invariant theory. The concept of observable subgroup was introduced in the early 1960s with the purpose of studying extensions of representations from an afine algebraic subgroup to the whole group. The extent of its importance in representation and invariant theory in particular for Hilbert's 14th problem was noticed almost immediately. An important strenghtening appeared in the mid 1970s when the concept of strong observability was introduced and it was shown that the notion of observability can be understood as an intermediate step in the notion of reductivity (or semisimplicity), when adequately generalized. More recently starting in 2010, the concept of observable subgroup was expanded to include the concept of observable action of an afine algebraic group on an afine variety, launching a series of new applications and opening a surge of very interesting activity. In another direction around 2006, the related concept of observable adjunction was introduced, and its application to module categories over tensor categories was noticed. In the current survey, we follow (approximately) the historical development of the subject introducing along the way, the definitions and some of the main results including some of the proofs. For the unproven parts, precise references are mentioned.

Keywords: observability; invariants; actions

Resumen:

El estudio de la noción de observabilidad muestra de modo transparente la rica interacción entre las ideas algebraicas y geométricas en la teoría geométrica de invariantes. El concepto de subgrupo observable fue introducido al inicio de la década de 1960 con el propósito de estudiar las extensiones de representaciones desde un subgrupo algebraico afín a todo el grupo (también algebraico afín). La importancia de la noción de subgrupo observable en la teoría de representaciones y la teoría de invariantes, en particular para el estudio del 14to problema de Hilbert, fue observada de inmediato. En la mitad de la década de 1970 apareció un refinamiento importante de esta noción: el concepto de observabilidad fuerte fue introducido y se mostró que la noción de observabilidad puede entenderse como un paso intermedio hacia la noción de reductividad (o semi-simplicidad), haciendo las generalizaciones adecuadas. Recientemente, al inicio de la década de 2010, el concepto de subgrupo observable fue expandido de modo de incluir la noción de acción observable de un grupo algebraico afín en una varidad algebraica afín. Esta generalización inició una serie de trabajos interesantes, con varias aplicaciones novedosas. En otra dirección, cerca de 2006 fue introducido el concepto de adjunción observable, que tuvo aplicación inmediata en el estudio de las módulo categorías sobre categorías tensoriales. En la revisión que sique, seguimos de modo aproximado el desarrollo histórico de esta temática, introduciendo a lo largo del camino las definiciones y los resultados centrales, junto con algunas de las pruebas. Para los resultados sin demostración, se mencionan referencias precisas.

Palabras clave: observabilidad; invariantes; acciones

Text complete and PDF

References

[1] N. Andruskiewitsch and W. Ferrer Santos, On observable module categories, in Groups, Rings and Group Rings, eds. A. Gianbruno, C. Polcino Milies, K.S. Sehgal. Lecture Notes in Pure and Appl. Math. No 248, Chapman & Hall/CRC, Boca Raton (2006), 11-23. [ Links ]

[2] A. Bialynicki-Birula, G. Hochschild, and D. Mostow, Extension of representations of algebraic linear groups, Amer. J. Math. 85 (1963), 131-144. [ Links ]

[3] A. Borel, Linear algebraic groups, Graduate Texts in Mathematics, Vol 126, 2d. enlarged ed., Springer-Verlag, New York, 1991. [ Links ]

[4] C. Chevalley, Théorie des groupes de Lie. Tome II. Groupes algébriques, Actualités Sci. Ind. no. 1152, Hermann & Cie., Paris, 1951. [ Links ]

[5] W.-L. Chow, On the projective embedding of homogeneous varieties, in: Algebraic geometry and topology. A symposium in honor of S. Lefschetz, pp 122-128, Princeton University Press, Princeton, N. J., 1957. [ Links ]

[6] E. Cline, B. Parshall, and L. Scott, Induced modules and affine quotients, Math. Ann. 230 (1977), no. 1, 1-14. [ Links ]

[7] Y. Doi, On the structure of relative Hopf modules, Comm. Algebra 11 (1983), no. 3, 243-253. [ Links ]

[8] ______, Algebras with total integrals, Comm. Algebra 13 (1985), no. 10, 2137-2159. [ Links ]

[9] Y. Doi and M. Takeuchi, Cleft comodule algebras for a bialgebra, Comm. Algebra 14 (1986), no. 5, 801-818. [ Links ]

[10] F. D. Grosshans, Observable groups and Hilbert's fourteenth problem, Amer. J. Math. 95 (1973), 229-253. [ Links ]

[11] ______, Localization and invariant theory, Adv. in Math. 21 (1976), no. 1, 50-60. [ Links ]

[12] ______, Algebraic homogeneous spaces and invariant theory, Lecture Notes in Mathematics, Vol. 1673, Springer-Verlag, Berlin,, 1997. [ Links ]

[13] W. J. Haboush, Reductive groups are geometrically reductive, Ann. of Math. 102 (1975), no. 2, 67-83. [ Links ]

[14] ______, Homogeneous vector bundles and reductive subgroups of reductive algebraic groups, Amer. J. Math. 100 (1978), 1123-1137. [ Links ]

[15] D. Hilbert, Problèmes futures de mathématiques, Comptes Rendus du 2ème Congrès International des Mathématiciens, Gauthier-Villars, Paris (1902), 58-111. [ Links ]

[16] G. Hochschild, Cohomology of algebraic linear groups, Illinois J. Math. 5 (1961), 492-519. [ Links ]

[17] ______, Rationally injective modules for algebraic linear groups, Proc. Amer. Math. Soc. 14 (1963), 880-883. [ Links ]

[18] ______, The structure of lie groups, Holden-Day, San Francisco, 1965. [ Links ]

[19] ______, Basic theory of algebraic groups and Lie algebras, Graduate Texts in Mathematics, Vol 75, Springer-Verlag, New York, 1981. [ Links ]

[20] G. Hochschild and G. D. Mostow, Extension of representations of Lie groups and Lie algebras, I., Amer. J. of Math. 79 (1957), 924-942. [ Links ]

[21] ______. , Unipotent groups in invariant theory, Proc. Nat. Acad. Sci. U.S.A. 70 (1973), 646-648. [ Links ]

[22] J. Humphreys, Conjugacy classes in semisimple algebraic groups, AMS Mathematical Surveys and Monographs 43 (1995), 196. [ Links ]

[23] J. E. Humphreys, Linear algebraic groups, Graduate Texts in Mathematics, Vol 21, Springer-Verlag, New York, 1975. [ Links ]

[24] A. Joyal and R. Street, Braided tensor categories, Adv. Math. 102 (1993), no. 1, 20-78. [ Links ]

[25] S. Mac Lane, Categories for the working mathematician, 2nd ed., Graduate texts in mathematics, no. 5, Springer-Verlag, New York, 1998. [ Links ]

[26] Y. Matsushima, Espaces homogènes de Stein des groupes de Lie complexes, Nagoya Math. Jour. 16 (1960), 205-218. [ Links ]

[27] S. Montgomery, Hopf algebras and their action on rings, CMBS Regional Conference Series in Mathematics, vol. 82, Published by the AMS, Providence, Rhode Island, 1993. [ Links ]

[28] G. D. Mostow, Extensions of representations of Lie groups, II, Amer. J. of Math. 80 (1958), 331-347. [ Links ]

[29] D. Mumford, Geometric invariant theory, Ergebnisse der Mathematik und ihrer Grenzgebiete, Vol 34, Springer-Verlag, Berlin, 1965. [ Links ]

[30] ______, Hilbert'os fourteenth problem - the finite generation of subrings such as rings of invariants, Mathematical developments arising from Hilbert problems (Proc. Sympos. Pure Math., Vol. XXVIII, Northern Illinois Univ., De Kalb, Ill., 1974), Amer. Math. Soc.., Providence, R. I., 1976. [ Links ]

[31] M. Nagata, On the fourteenth problem of Hilbert, Proc. Internat. Congress Math. 1958, Cambridge Univ. Press, New York (1960), 459-462. [ Links ]

[32] ______, Lectures on the fourteenth problem of hilbert, Tata Institute of Fundamental Research, Bombay, 1965. [ Links ]

[33] U. Oberst, Affine Quotientenschemata nach affinen, algebraischen Gruppen und induzierte Darstellungen, J. Algebra 44 (1977), no. 2, 503-538. [ Links ]

[34] V. Popov, On the stability of the action of an algebraic group on an algebraic variety, Math. USSR Izv. 6 (1973), 367-379. [ Links ]

[35] V. L. Popov and E. B. Vinberg, Invariant theory, algebraic geometry. iv, Enciclopae- dia of Mathematical Sciences, vol. 55, Springer-Verlag, Berlin, 1994, Linear algebraic groups. Invariant theory, A translation of Algebraic geometry. 4 (Russian), Akad. Nauk SSSR Vsesoyuz. Inst. Nauchn. i Tekhn. Inform., Moscow, Translation edited by A. N. Parshin and I. R. Shafarevich. [ Links ]

[36] L. Renner and A. Rittatore, Observable actions of algebraic groups, Transform. Groups 14 (2010), 985-999, arXiv:0902.0137v2[math.AG]. [ Links ]

[37] L. E. Renner, Orbits and invariants of visible group actions, Transform. Groups 14 (2012), no. 4, 1191-1208. [ Links ]

[38] ______, Observability in invariant theory, Proc. Amer. Math. Soc. 141 (2013), [ Links ]

[39] ______, Observability in invariant theory II: Divisors and rational invariants, Proc. Amer. Math. Soc. 143 (2015), no. 10, 4113-4121. [ Links ]

[40] ______, The adjoint action is observable, J. Algebra 441 (2015), 159-165. [ Links ]

[41] R. W. Richardson, Affine coset spaces of reductive algebraic groups, Bull. London Math. Soc. 9 (1977), no. 1, 38-41. [ Links ]

[42] M. Rosenlicht, Some basic theorems on algebraic groups, Amer. J. Math. 78 (1956), 401-443. [ Links ]

[43] W. Ferrer Santos, Closed conjugacy classes, closed orbits and structure of algebraic groups, Comm. Algebra 19 (1991), no. 12, 3241-3248. [ Links ]

[44] ______, A generalization of the concept of linearly and geometrically reductive group, Topics in Algebraic Geometry. Proceedings of the workshop on algebraic geometry. Eds. L. Brambila, X. Gómez-Mont. Guanajuato, Mexico, 1989. Aportaciones Matemáticas, Notas de Investigación, vol 5. Sociedad Matemática Mexicana, 1992. [ Links ]

[45] W. Ferrer Santos and A. Rittatore, Linearly reductive and unipotent actions of affine groups, International Journal of Mathematics 26 (2015), no. 5, 1-31. [ Links ]

[46] ______ Actions and Invariants of Algebraic Groups. 2d. Edition, Series: Monographs and Research Notes in Mathematics, CRC Press, Florida, 2017. [ Links ]

[47] H.-J. Schnei der , Principal homogeneous spaces for arbitrary Hopf algebras, Israel, J. of Mat. 72 (1990), no. 1-2, 167-195. [ Links ]

[48] T. A. Springer, Linear algebraic groups, 2 ed, Modern Birkhäuser classics, Birkhäuser, Basel. [ Links ]

[49] R. Steinberg, Conjugacy classes in algebraic groups, Lecture Notes in Mathematics, Vol. 366, Springer-Verlag, Berlin, 1974. [ Links ]

[50] M. Sweedler, Hopf algebras, Mathematics Lecture Notes Series, W.A. Benjamin, inc., New York, 1969. [ Links ]

[51] A. Weil, On algebraic groups and homogeneous spaces, Amer. J. Math. 77 (1955), 493-512. [ Links ]

Received: September 13, 2018; Accepted: February 11, 2019

aCorrespondencia: Walter Ferrer Santos, Departamento de matemática y aplicaciones, Cure, Universidad de la República, Tacuarembó entre Av. Artigas y Aparicio Saravia, CP 20000, Maldonado, Uruguay. Correo electrónico: wrferrer@cure.edu.uy. DOI: https://doi.org/10.15446/recolma.v53nsupl.84013

2010 Mathematics Subject Classification. 14R20, 13A50.

Creative Commons License Todo el contenido de esta revista, excepto dónde está identificado, está bajo una Licencia Creative Commons BY