SciELO - Scientific Electronic Library Online

 
vol.55 issue1Strongly nonlinear elliptic unilateral problems without sign condition and with free obstacle in Musielak-Orlicz spacesA Spectral Gradient Projection Method for the Positive Semi-definite Procrustes Problem author indexsubject indexarticles search
Home Pagealphabetic serial listing  

Services on Demand

Journal

Article

Indicators

Related links

  • On index processCited by Google
  • Have no similar articlesSimilars in SciELO
  • On index processSimilars in Google

Share


Revista Colombiana de Matemáticas

Print version ISSN 0034-7426

Rev.colomb.mat. vol.55 no.1 Bogotá Jan./June 2021  Epub Nov 17, 2021

https://doi.org/10.15446/recolma.v55n1.99099 

ORIGINAL ARTICLES

Modeling the dengue fever transmission in a periodic environment

Modelando la transmisión de la fiebre del dengue en un entorno periódico

Julián Alejandro Olarte1  * 

Anibal Muñoz1 

1 Universidad del Quindío, Armenia, Colombia


Abstract

A mathematical model for dengue fever transmission is analyzed, which incorporates relevant biological and ecological factors: vertical transmission and seasonality in the interaction between the vector (Aedes aegypti females) and the host (human). The existence and uniqueness of a positive disease-free periodic solution is proved; the global stability of the disease-free solution and the effect of periodic migrations of mosquitoes carrying the virus on the transmission of dengue are analyzed utilizing the mathematical definition of the Basic Reproductive Number in periodic environments; finally, it is numerically corroborated with the help of the Basic Reproductive Number that dengue cannot invade the disease-free state if it is less than one and can invade if it is greater than one, however, in both threshold conditions when vertical transmission occurs, the number of infected people and carrier vectors rises, representing a mechanism for the persistence of dengue cases in a community throughout a natural year.

Keywords: Dengue; seasonality; Aedes aegypti; vertical transmission; Basic Reproductive Number

Resumen

Se propone un modelo matemático para la transmisión de la fiebre del dengue que incorpora factores biológicos y ecológicos relevantes: transmisión vertical y estacionalidad en la interacción entre el vector (Aedes aegypti) y el hospedero (humano). Se demuestra la existencia y unicidad de una solución periódica positiva libre de la enfermedad; la estabilidad global de la solución libre de la enfermedad y el efecto de las inmigraciones periódicas de mosquitos portadores del virus en la transmisión del dengue se analizan mediante la definición matemática del Número Reproductivo Básico en ambientes periódicos; finalmente, se corrobora numéricamente con ayuda del Número Reproductivo Básico que el dengue no puede invadir el estado libre de la enfermedad si es menor que uno y puede invadir si es mayor que uno, sin embargo, cuando en ambas condiciones de umbral ocurre transmisión vertical, se eleva el número de personas infectadas y vectores portadores, representando un mecanismo para la persistencia de casos de dengue en una comunidad a lo largo de un año natural.

Palabras clave: Dengue; estacionalidad; Aedes aegypti; transmisión vertical; Número Reproductivo Básico

Texto PDF

References

1. B. Adams and M. Boots, How important is vertical transmission in mosquitoes for the persistence of dengue? Insights from a mathematical model, Epidemics (2010). [ Links ]

2. S. Altizer, A. Dobson, and P. Hosseini et al, Seasonality and the dynamics of infectious diseases, Ecology letters (2006). [ Links ]

3. M. Andraud, N. Hens, C. Marais, and P. Beutels, Dynamic epidemiological models for dengue transmission: a systematic review of structural approaches, PloS one (2012). [ Links ]

4. B. Angel and V. Joshi, Distribution and seasonality of vertically transmitted dengue viruses in Aedes mosquitoes in arid and semi-arid areas of rajasthan, india, Journal of vector borne diseases (2008). [ Links ]

5. N. Arunachalam, S. C. Tewari, and V. Thenmozhi et al, Natural vertical transmission of dengue viruses by Aedes aegypti in Chennai, Tamil Nadu, India, Indian Journal of Medical Research (2008). [ Links ]

6. N. Bacaër, Genealogy with seasonality, the basic reproduction number, and the influenza pandemic, Journal of Mathematical Biology (2011). [ Links ]

7. N. Bacaër and E. H. Ait Dads, On the biological interpretation of a definition for the parameter R0 in periodic population models, Journal of Mathematical Biology (2012). [ Links ]

8. N. Bacaër and S. Guernaoui, The epidemic threshold of vector-borne diseases with seasonality, Journal of Mathematical Biology (2006). [ Links ]

9. L. M. Bartley, C. A. Donnelly, and G. P. Garnett, The seasonal pattern of dengue in endemic areas: mathematical models of mechanisms, Transactions of the royal society of tropical medicine and hygiene (2002). [ Links ]

10. T. A. Burton, Stability and periodic solutions of ordinary and functional differential equations, Academic Press, New York, 1985. [ Links ]

11. M. Canals, C. González, and A. Canals et al, Dinámica epidemiológica del dengue en Isla de Pascua, Revista chilena de infectología 29 (2012), 388-394. [ Links ]

12. F. A. B. Coutinhoa, M. N. Burattinia, and L. F. Lopeza et al, Threshold conditions for a non-autonomous epidemic system describing the population dynamics of dengue, Bulletin of mathematical biology (2006). [ Links ]

13. Departamento Administrativo Nacional de Estadística, Proyecciones demográficas por municipio basadas en el censo del año 2005, Colombia, DANE, 2010, Retrieved from https://www.dane.gov.co/index.php/estadisticas-por-tema/demografia-y-poblacion/proyecciones-de-poblacion. [ Links ]

14. Departamento Administrativo Nacional de Estadística, Proyecciones nacionales y departamentales de población 2005-2020, Colombia, DANE, 2010, Retrieved from https://www.dane.gov.co/index.php/estadisticas-por-tema/demografia-y-poblacion/proyecciones-de-poblacion. [ Links ]

15. O. Diekmann and J. A. P. Heesterbeek, Mathematical epidemiology of infectious diseases: model building, analysis and interpretation (Vol. 5), John Wiley & Sons, Chichester, 2000. [ Links ]

16. O. Diekmann , J. A. P. Heesterbeek , and M. G. Roberts, The construction of next-generation matrices for compartmental epidemic models, Journal of the Royal Society Interface (2010). [ Links ]

17. L. Esteva and C. Vargas, Analysis of a dengue disease transmission model, Mathematical biosciences (1998). [ Links ]

18. L. Esteva and C. Vargas , Influence of vertical and mechanical transmission on the dynamics of dengue disease, Mathematical biosciences (2000). [ Links ]

19. E. Quispe et al, Ciclo biológico y Tabla de Vida de Aedes aegypti, en laboratorio: Trujillo (Perú), 2014, Revista REBIOLEST (2015). [ Links ]

20. J. Liu-Helmersson et al., Climate change and Aedes vectors: 21st century projections for dengue transmission in Europe, EBioMedicine (2016). [ Links ]

21. Z. Feng and J. X. Velasco-Hernández, Competitive exclusion in a vector-host model for the dengue fever, Journal of Mathematical Biology (1997). [ Links ]

22. H. O. Florentino, D. R. Cantane, and F. L. Santos et al, Multiobjective genetic algorithm applied to dengue control, Mathematical biosciences 258 (2014), 77-84. [ Links ]

23. D. A. Focks, R. J. Brenner, J. Hayes, and E. Daniels, Transmission thresholds for dengue in terms of Aedes aegypti pupae per person with discussion of their utility in source reduction efforts, American Journal of Tropical Medical Hygiene (2014). [ Links ]

24. F. Fouque, R. Carinci, P. Gaborit, J. Issaly, D. J. Bicout, and P. Sabatier, Aedes aegypti survival and dengue transmission patterns in French Guiana, Journal of Vector Ecology (2006). [ Links ]

25. V. Frantchez, R. Fornelli, and G. P. Sartori et al, Dengue en adultos: diagnóstico, tratamiento y abordaje de situaciones especiales, Revista Médica del Uruguay 32 (2016), 43-51. [ Links ]

26. K. L. Gage, T. R. Burkot, and R. J. Eisen et al, Climate and vectorborne diseases, American journal of preventive medicine (2008). [ Links ]

27. M. G. Guzman, S. B. Halstead, and H. Artsob et al, Dengue: a continuing global threat, Nature Reviews Microbiology (2010). [ Links ]

28. J. K. Hale, Ordinary Differential Equations, Malabar, FL, USA: Robert E. Krieger Publishing Company, Inc, 1980. [ Links ]

29. S. B. Halstead , Dengue, The lancet (2007). [ Links ]

30. P. Hartman, Ordinary Differential Equations, John Wiley and Sons, Inc., New York, 1964. [ Links ]

31. J. A. P. Heesterbeek and M. G. Roberts , Threshold quantities for infectious diseases in periodic environments, Journal of biological systems (1995). [ Links ]

32. P. Hess, Periodic-parabolic boundary value problems and positivity, Pitman Res. Notes Math. Ser., vol. 247, Longman Scientific and Technical, Harlow, 1991. [ Links ]

33. P. Hess, H. L. Smith and P. Waltman, The theory of the chemostat: dynamics of microbial competition (Vol. 13), Cambridge university press, 1995. [ Links ]

34. W. M. Hirsch, H. Hanisch, and J. P. Gabriel, Differential equation models of some parasitic infections: methods for the study of asymptotic behavior, Communications on Pure and Applied Mathematics (1985). [ Links ]

35. H. Inaba, On a new perspective of the basic reproduction number in heterogeneous environments, Journal of Mathematical Biology (2012). [ Links ]

36. V. Joshi , D. T. Mourya, and R. C. Sharma, Persistence of dengue-3 virus through transovarial transmission passage in successive generations of Aedes aegypti mosquitoes, The American journal of tropical medicine and hygiene (2002). [ Links ]

37. T. Kato, Perturbation theory for linear operators (Vol. 132), Springer Science & Business Media, 2013. [ Links ]

38. H. K. Khalil and J. W. Grizzle, Nonlinear systems (Vol. 3), Upper Saddle River, NJ: Prentice hall, 2002. [ Links ]

39. C. Y. Kow, L. L. Koon, and P. F. Yin, Detection of dengue viruses in field caught male Aedes aegypti and Aedes albopictus (Diptera: Culicidae) in Singapore by type-specific PCR, Journal of medical entomology (2001). [ Links ]

40. V. Lakshmikantham, S. Leela, and A. A. Martynyuk, Stability analysis of nonlinear systems, Marcel Dekker Inc., New York, Basel, 1989. [ Links ]

41. J. Liu-Helmersson , H. Stenlund, and A. Wilder-Smith et al, Vectorial capacity of Aedes aegypti: effects of temperature and implications for global dengue epidemic potential, Addison-Wesley Publishing Company, PloS one 9 (2014), e89783. [ Links ]

42. D. P. Lizarralde-Bejarano, S. Arboleda-Sánchez, and M. E. Puerta-Yepes, Understanding epidemics from mathematical models: Details of the 2010 dengue epidemic in Bello (Antioquia, Colombia), Applied Mathematical Modelling (2017). [ Links ]

43. E. Martínez, Dengue, Estudos avançados 22 (2008), 33-52. [ Links ]

44. C. J. Mitchell and B. R. Miller, Vertical transmission of dengue viruses by strains of Aedes albopictus recently introduced into brazil, Journal of the American Mosquito Control Association (1990). [ Links ]

45. M. S. Mustafa, V. Rasotgi, and S. Jain et al, Discovery of fifth serotype of dengue virus (DENV-5): A new public health dilemma in dengue control, Medical Journal Armed Forces India 71 (2015), 67-70. [ Links ]

46. Y. Nakata and T. Kuniya, Global dynamics of a class of SEIRS epidemic models in a periodic environment, J. Math. Anal. Appl. (2010). [ Links ]

47. E. A. Newton and P. Reiter, A model of the transmission of dengue fever with an evaluation of the impact of ultra-low volume (ULV) insecticide applications on dengue epidemics, The American journal of tropical medicine and hygiene (1992). [ Links ]

48. World Health Organization, Dengue hemorrhagic fever: diagnosis, treatment, prevention and control, 2nd edition, Geneva, Switzerland: WHO, 1997. [ Links ]

49. S. T. R. D. Pinho, C. P. Ferreira, L. Esteva , F. R. Barreto, V. C. Morato e Silva, and M. G. L. Teixeira, Modelling the dynamics of dengue real epidemics, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences (2010). [ Links ]

50. D. Posny and J. Wang, Computing the basic reproductive numbers for epidemiological models in nonhomogeneous environments, Applied Mathematics and Computation (2014). [ Links ]

51. J. P.Tian and J. Wang , Some results in Floquet theory, with application to periodic epidemic models, Applicable Analysis (2015). [ Links ]

52. J. G. Rigau-Pérez, G. G. Clark, and D. J. Gubler et al, Dengue and dengue haemorrhagic fever, The Lancet (1998). [ Links ]

53. H. S. Rodrigues, M. T. T. Monteiro, and D. F. Torres, Seasonality effects on dengue: basic reproduction number, sensitivity analysis and optimal control, Mathematical Methods in the Applied Sciences (2016). [ Links ]

54. T. Sardar, S. Rana, and J. Chattopadhyay, A mathematical model of dengue transmission with memory, Communications in Nonlinear Science and Numerical Simulation (2015). [ Links ]

55. H. R. Thieme, Spectral bound and reproduction number for infinitedimensional population structure and time heterogeneity, SIAM Journal on Applied Mathematics (2009). [ Links ]

56. P. van den Driessche, Reproduction numbers of infectious disease models, Infectious Disease Modelling (2017). [ Links ]

57. P. van den Driessche and J. Watmough, Reproduction numbers and subthreshold endemic equilibria for compartmental models of disease transmission, Mathematical biosciences (2002). [ Links ]

58. W. Wang and X. Q. Zhao, Threshold dynamics for compartmental epidemic models in periodic environments, Journal of Dynamics and Differential Equations (2008). [ Links ]

59. X. Wang and X. Q. Zhao , Dynamics of a time-delayed Lyme disease model with seasonality, SIAM Journal on Applied Dynamical Systems (2017). [ Links ]

60. L. Wasinpiyamongkol, S. Thongrungkiat, and N. Jirakanjanakit et al, Susceptibility and transovarial transmission of dengue virus in Aedes aegypti: a preliminary study of morphological variations, Southeast Asian journal of tropical medicine and public health (2003). [ Links ]

Received: December 06, 2020; Accepted: March 01, 2021

* Correspondencia: Julián Alejandro Olarte, Grupo de Modelación Matemática en Epidemiología (GMME), Universidad del Quindío, Facultad de Ciencias Básicas y Tecnologías, Carrera 15 Calle 12 Norte, Armenia (Quindío),Colombia. Correo electrónico: jaolarteg@uqvirtual.edu.co. DOI: https://doi.org/10.15446/recolma.v55n1.99099

Creative Commons License This is an open-access article distributed under the terms of the Creative Commons Attribution License