SciELO - Scientific Electronic Library Online

 
vol.56 número1Faà di Bruno Hopf algebrasInduced character in equivariant K-theory, wreath products and pullback of groups índice de autoresíndice de assuntospesquisa de artigos
Home Pagelista alfabética de periódicos  

Serviços Personalizados

Journal

Artigo

Indicadores

Links relacionados

  • Em processo de indexaçãoCitado por Google
  • Não possue artigos similaresSimilares em SciELO
  • Em processo de indexaçãoSimilares em Google

Compartilhar


Revista Colombiana de Matemáticas

versão impressa ISSN 0034-7426

Rev.colomb.mat. vol.56 no.1 Bogotá jan./jun. 2022  Epub 02-Jan-2024

https://doi.org/10.15446/recolma.v56n1.105612 

ORIGINAL ARTICLES

A novel iterative method to solve nonlinear wave-like equations of fractional order with variable coefficients

Un nuevo método iterativo para resolver ecuaciones onduladas no lineales de orden fraccionario con coeficientes variables

Ali Khalouta1 

1 Ferhat Abbas Sétif University


Abstract

In this work, we suggest a novel iterative method to give approximate solutions of nonlinear wave-like equations of fractional order with variable coefficients. The advantage of the proposed method is the ability to combine two different methods: Shehu transform method and homotopy analysis method, in addition to providing an approximate solution in the form of a convergent series with easily computable components, requiring no linearization or small perturbation. This method can be called Shehu homotopy analysis method (SHAM). Three different examples are presented to illustrate the preciseness and effectiveness of the proposed method. The numerical results show that the solutions obtained by SHAM are in good agreement with the solutions found in the literature. Furthermore, the results show that this method can be implemented in an easy way and therefore can be used to solve other nonlinear fractional partial differential equations.

Keywords: Nonlinear wave-like equations with variable coefficients; Caputo fractional derivative; Shehu transform; homotopy analysis method; approximate solution

Resumen

En este trabajo, sugerimos un método iterativo novedoso para dar una solución aproximada de ecuaciones onduladas no lineales de orden fraccionario con coeficientes variables. La ventaja del método propuesto es la capacidad de combinar dos métodos diferentes: el método de transformación de Shehu y el método de análisis de homotopía, además de proporcionar una solución aproximada en forma de una serie convergente con componentes fácilmente computables, que no requieren linealización ni pequeñas perturbaciones. Este método se puede llamar método de análisis de homotopía Shehu (SHAM). Se presentan tres ejemplos diferentes para ilustrar la precisión y eficacia del método propuesto. Los resultados numéricos muestran que las soluciones obtenidas por SHAM están en buen acuerdo con las soluciones encontradas en la literatura. Además, los resultados muestran que este método es fácil de aplicar y, por lo tanto, se puede utilizar para resolver otras ecuaciones diferenciales parciales fraccionarias no lineales.

Palabras clave: Ecuaciones onduladas no lineales con coeficientes variables; derivada fraccional de Caputo; transformada Shehu; método de análisis de homotopía; solución aproximada

Texto PDF

REFERENCES

1. T. Abdeljawad, Q. Al-Mdallal, and F. Jarad, Fractional logistic models in the frame of fractional operators generated by conformable derivatives, Chaos, Solitons & Fractals 119 (2019), 94-101. [ Links ]

2. A. S. Abedl-Rady, S. Z. Rida, A. A. M. Arafa, and H. R. Abedl-Rahim, Variational Iteration Sumudu Transform Method for Solving Fractional Nonlinear Gas Dynamics Equation, International Journal of Research Studies in Science, Engineering and Technology 1 (2014), no. 9, 82-90. [ Links ]

3. O. Acana, M. M. Al Qurashib, and D. Baleanuc, Reduced differential transform method for solving time and space local fractional partial differential equations, Journal of Nonlinear Sciences and Applications 10 (2017), 5230-5238. [ Links ]

4. Q. Al-Mdallal , K. A. Abro, and I. Khan, Analytical Solutions of Fractional Walter's B Fluid with Applications, Complexity (2018), Article ID 8131329. [ Links ]

5. Q. Al-Mdallal and A. S. Abu Omer, Fractional-order Legendre-collocation method for solving fractional initial value problems, Applied Mathematics and Computation 321 (2018), 74-84. [ Links ]

6. S. Aman, Q. Al-Mdallal , and I. Khan , Heat transfer and second order slip effect on MHD flow of fractional Maxwell fluid in a porous medium, Journal of King Saud University-Science 31 (2020), no. 1, 450-458. [ Links ]

7. R. Belgacem, D. Baleanu, and A. Bokhari, Shehu Transform and Applications to Caputo-Fractional Differential Equations, International Journal of Analysis and Applications 17 (2019), no. 6, 917-927. [ Links ]

8. M. Ganjiana, Solution of nonlinear fractional differential equations using homotopy analysis method, Applied Mathematical Modelling 34 (2010), no. 6, 1634-1641. [ Links ]

9. M. Ghoreishi, A. I. B. Ismail, and N. H. M. Ali, Adomian Decomposition Method (ADM) for Nonlinear Wave-like Equations with Variable Coefficient, Applied Mathematical Sciences 4 (2010), no. 29, 2431-2444. [ Links ]

10. M. Gubes, Y. Keskin, and G. Oturanc, Numerical Solutions of Nonlinear Wave-Like Equations by Reduced Differential Transform Method, Thai Journal of Mathematics 18 (2020), no. 2, 639-650. [ Links ]

11. P. K. Gupta and M. Singh, Homotopy perturbation method for fractional Fornberg-Whitham equation, Computers & Mathematics with Applications 61 (2011), no. 2, 250-254. [ Links ]

12. V. G. Gupta and S. Gupta, Homotopy perturbation transform method for solving nonlinear wave-like equations of variable coefficients, Journal of Information and Computing Science 8 (2013), no. 3, 163-172. [ Links ]

13. H. Jafari, C. M. Khalique, and M. Nazari, Application of the Laplace decomposition method for solving linear and nonlinear fractional difusion-wave equations, Applied Mathematics Letters 24 (2011), no. 11, 1799-1805. [ Links ]

14. A. Khalouta, The Existence and Uniqueness of Solution for Fractional Newell-Whitehead-Segel Equation Within Caputo-Fabrizio Fractional Operator, Applications and Applied Mathematics 16 (2021), no. 2, 894-909. [ Links ]

15. A. Khalouta, Closed-Form Solutions to Some Nonlinear Fractional Partial Differential Equations Arising in Mathematical Sciences, Palestine Journal of Mathematics 11 (2022), 113-126. [ Links ]

16. A. Khalouta, A novel representation of numerical solution for fractional Bratu-type equation, Advanced Studies: Euro-Tbilisi Mathematical Journal 15 (2022), no. 1, 93-109. [ Links ]

17. A. A. Kilbas, H. M. Srivastava, and J.J. Trujillo, Theory and Application of Fractional Differential Equations, Elsevier, Amsterdam, 2006. [ Links ]

18. R. P. Kumar and H. M. Kumar, Homotopy analysis Sumudu transform method for time-fractional third order dispersive partial differential equation, Advances in Computational Mathematics 43 (2017), no. 2, 365-383. [ Links ]

19. S. Liao, On the homotopy analysis method for nonlinear problems, Applied Mathematics and Computation 147 (2014), no. 2, 499-513. [ Links ]

20. Sh. Maitama, A Hybrid Natural Transform Homotopy Perturbation Method for Solving Fractional Partial Differential Equations, International Journal of Differential Equations (2016), Article ID 9207869. [ Links ]

21. Sh. Maitama and W. Zhao, New Integral Transform: Shehu Transform A Genaralization of Sumudu and Laplace Transform for Solving Differential Equations, International Journal of Analysis and Applications 17 (2019), no. 2, 167-190. [ Links ]

22. I. Podlubny, Fractional Differential Equations, Academic Press, New York, 1999. [ Links ]

23. M. S. Rawashdeh and S. Maitama, Solving coupled system of nonlinear pdes using the natural decomposition method, International Journal of Pure and Applied Mathematics 92 (2014), no. 5, 757-776. [ Links ]

24. S. Z. Rida , A. A. A. Arafa, A. S. Abedl-Rady , and H. R. Abdl-Rahim, Homotopy analysis natural transform method for solving fractional physical models, International Journal of Pure and Applied Mathematics 117 (2017), no. 1, 19-32. [ Links ]

25. L. Song and W. Wang, A new improved Adomian decomposition method and its application to fractional differential equations, Applied Mathematical Modelling 37 (2013), no. 3, 1590-1598. [ Links ]

26. G. C. Wu and E. W. M. Lee, Fractional variational iteration method and its application, Physics Letters A 374 (2010), no. 25, 2506-2509. [ Links ]

27. A. M. Yang, J. Li, H. M. Srivastava , G. N. Xie, and X. J. Yang, Local Fractional Laplace Variational Iteration Method for Solving Linear Partial Differential Equations with Local Fractional Derivative, Discrete Dynamics in Nature and Society (2014), Article ID 365981. [ Links ]

28. E. A. Yousif and S. H. M. Hamed, Solution of Nonlinear Fractional Differential Equations Using the Homotopy Perturbation Sumudu Transform Method, Applied Mathematical Sciences 8 (2014), no. 44, 2195-2210. [ Links ]

29. M. Zurigat, Solving Fractional Oscillators Using Laplace Homotopy Analysis Method, Annals of the University of Craiova, Mathematics and Computer Science Series 38 (2011), no. 4, 1-11. [ Links ]

Received: May 27, 2021; Accepted: May 12, 2022

Correspondencia: Ali Khalouta, Laboratory of Fundamental and Numerical Mathematics, Department of Mathematics, Faculty of Sciences. Ferhat Abbas Sétif University 1, 19000 Sétif, Algeria. Correo electrónico: ali.khalouta@univ-setif.dz. DOI: https://doi.org/10.15446/recolma.v56n1.105612

Creative Commons License This is an open-access article distributed under the terms of the Creative Commons Attribution License