SciELO - Scientific Electronic Library Online

 
vol.68 issue1Systematic review and comparative analysis of pediatric nutrition screening tools validated in Europe and CanadaCharaterization of prenatal exposure variables in a group of children aged 0-5 years with congenital heart defect treated in Cali, Colombia. The importance of folic acid author indexsubject indexarticles search
Home Pagealphabetic serial listing  

Services on Demand

Journal

Article

Indicators

Related links

  • On index processCited by Google
  • Have no similar articlesSimilars in SciELO
  • On index processSimilars in Google

Share


Revista de la Facultad de Medicina

Print version ISSN 0120-0011

rev.fac.med. vol.68 no.1 Bogotá Jan./Mar. 2020

https://doi.org/10.15446/revfacmed.v68n1.74383 

Original papers

Use of non-pharmacological interventions during urinary catheter insertion for reducing urinary tract infections in non-immunocompromised adults. A systematic review

intervenciones no farmacológicas durante la inserción de un catéter urinario permanente para reducir las infecciones en adultos inmunocompetentes. Revisión sistemática

Ximena Sáenz-Montoya1 

Carlos Fernando Grillo-Ardila2 

Jairo Amaya-Guio2  * 

Jessica Muñoz-Vesga1 

1 Universidad Nacional de Colombia - Bogotá Campus - Faculty of Nursing - Department of Nursing - Bogotá D.C. -Colombia.

2 Universidad Nacional de Colombia - Bogotá Campus - Faculty of Medicine - Department of Obstetrics and Gynecology - Bogotá D.C. - Colombia.


Abstract

Introduction:

Catheter-associated urinary tract infections (CAUTI) account for up to 30% of hospital -acquired infections. In this regard, several studies have reported the use of non-pharmacological interventions during urinary catheter insertion aimed at reducing the occurrence rate of CAUTI.

Objective:

To assess the safety and effectiveness of non-pharmacological interventions during urinary catheter insertion aimed at reducing the risk of contracting infections in non-immunocompromised adults.

Materials and methods:

A literature review was conducted in the MEDLINE, Embase, and LILACS databases. Only randomized clinical trials comparing the use of non-pharmacological interventions to placebos, pharmacological interventions, or no intervention during catheter insertion were included.

Results:

Eight studies were retrieved (8 718 participants). Based on the evidence found in the review (low-quality and very low-quality evidence according to the GRADE system), using non-pharmacological interventions reduces the frequency of asymptomatic bacteriuria episodes (RR 0.67, 95%CI 0.48-0.94; 7 studies) or mild adverse events (RR 0.84, 95%CI 0.74-0.96; 2 studies), but does not reduce the occurrence rate of symptomatic urinary tract infections (RR 0.90, 95%CI 0.61-1.35; 4 studies) or improves quality-of-life scores (MD -0.01 EQ-5D scale; 95%CI (-0.03)-(0.01), 1 study).

Conclusion:

The use of non-pharmacological interventions during urinary catheter insertion does not pose any risk at all. Instead, it could help reduce the occurrence rate of infections associated with this procedure, such as asymptomatic bacteriuria and mild adverse events. However, there is very little evidence (in fact, low and very low-quality evidence) to make conclusions on the effectiveness of these interventions.

Keywords: Early Medical Intervention; Urinary Catheterization; Urinary Tract Infections; Cross Infection (MeSH)

Resumen

Introducción.

La infección asociada al catéter urinario es responsable de hasta un 30% de las infecciones nosocomiales. Al respecto, se ha descrito el uso de intervenciones no farmacológicas durante la inserción del catéter urinario para reducir la frecuencia de infecciones asociadas.

Objetivo.

Evaluar la seguridad y la efectividad de intervenciones no farmacológicas durante la inserción del catéter urinario diseñadas para reducir el riesgo de infección en adultos inmunocompetentes.

Materiales y métodos.

Se realizó una búsqueda en las bases de datos MEDLINE, Embase y LILACS. Se incluyeron ensayos clínicos aleatorizados que compararan el uso de intervenciones no farmacológicas con el uso de placebos, el uso de intervenciones farmacológicas o la ausencia de intervención durante la inserción del catéter.

Resultados.

Se encontraron ocho estudios (8 718 participantes). Con base en la evidencia encontrada (baja y muy baja calidad según la clasificación del sistema GRADE), el uso de intervenciones no farmacológica reduce la frecuencia de bacteriuria asintomática (RR 0.67; IC95%: 0.48-0.94; 7 estudios) o de eventos adversos menores (RR 0.84, IC95%: 0.74-0.96; 2 estudios), pero no disminuye la tasa de infecciones sintomáticas del tracto urinario (RR 0.90; IC95%: 0.61 a 1.35; 4 estudios), ni mejora las puntuaciones de calidad de vida (escala MD -0.01 EQ-5D, IC95%: (-0.03)-(0.01), 1 estudio).

Conclusión.

El uso de intervenciones no farmacológicas durante la inserción del catéter urinario no supone riesgo alguno y sí podría ayudar a disminuir la frecuencia infecciones asociadas a este procedimiento, tales como la bacteriuria asintomática y eventos adversos menores; sin embargo, hay poca evidencia, y de baja o muy baja calidad, para llegar a conclusiones sobre su efectividad.

Palabras clave: Intervención médica temprana; Cateterismo urinario; Infecciones urinarias; Infección hospitalaria (DeCS)

Introduction

Catheterization is a common procedure that consists of the insertion of a latex, polyurethane, or silicone tube into the bladder to drain its contents. 1 Urinary catheters can be indwelling or placed intermittently depending on the indications and the patient's condition. Intermittent catheters are inserted every 6 to 8 hours, 2 while indwelling catheters are inserted for a period of time greater than 24 hours, and are usually connected to a collection bag. 3 Indwelling catheterization is typically used in patients with pathologies such as prostatic hyperplasia, neurogenic bladder, urinary retention, severe urinary incontinence, as well as critically ill patients4 and those with pressure ulcers in the sacral region, or with contaminated perineal lesions associated with incontinence. 5

Urinary catheterization is a minor procedure undertaken in up to 25% of all hospitalized patients. 6 It carries substantial risks and causes high morbidity and mortality secondary to bacteremia, as well as longer hospital stays and higher resource consumption. 7 Catheter-associated urinary tract infection (CAUTI) accounts for up to 30% of health-care associated infections. 7 In Latin America, CAUTI is the third leading cause of nosocomial infections and its incidence is estimated at 8.9 cases per 1 000 days of exposure to this device. 6 In Colombia, the estimated prevalence is 12% to 45%, which makes it one of the top five infections reported in the country. 6 In Bogotá, a prevalence of 16.1% was reported for the 2012-2013 period, with an incidence rate of 3.9 cases per 1 000 days of exposure. 6

Since urinary catheterization carries substantial risks, multiple interventions have been described with the aim of reducing the occurrence of infectious processes. Non-pharmacological interventions include staff training in catheter insertion and care. 8 Access to guidelines and algorithms allows standardizing interventions that avoid variability among healthcare staff and guide the timely removal of unnecessary catheters. 7,9 Hand washing before and after catheter insertion and manipulation reduces non-saprophytic microflora without affecting the saprophytic microflora of the skin. 5,7 Using an aseptic technique, sterile equipment and supplies during the preparation of the catheter insertion area and during the insertion, using barrier measures such as sterile gowns and gloves; 10 and the use of antiseptics for cleaning the urinary meatus help reduce microbial load and the entrainment of microorganisms. 5,11

In addition, the lubricant applied prior to insertion contributes to bladder neck relaxation, facilitating the passage of the catheter, and also prevents urethral trauma, false passages and pain. 10 Inserting a catheter of the smallest possible size can minimize urethral trauma and lead to a more effective drainage, 5,12 while using a closed drainage system makes it more difficult for microorganisms to colonize the urethral meatus intraluminally. colonize the urethral meatus intraluminal 13

Regarding pharmacological interventions, silicone catheters are recommended for patients requiring a long-term urinary catheter and in those with frequent obstruction of the device.7 Antimicrobial-coated catheters are used in patients with a CAUTI that does not decrease with the application of primary strategies. Finally, the consumption of blueberries, 14 lactobacilli15 and Chinese herbal medicines14 has also been proposed to prevent urinary infections.

Since the use of catheters in clinical practice is heterogenous and considering the frequency of adverse events and the appearance of infections associated with their insertion and use, this systematic review seeks to assess the effects of non-pharmacological interventions aimed at reducing the probability of CAUTI in the adult population. This will help develop policies designed to standardize the care of adult patients with urinary catheterization.

Materials and methods

The report was developed following the recommendations suggested by the Cochrane Handbook (CHB) 16 and in accordance with the PRISMA statement.17 Review methods were established before conducting the literature search, which is detailed at http://www.crd.york.ac.uk/PROSPERO/display_record.php?ID=CRD42017051553. Ethical approval was not required because this is a secondary study.

An attempt was made to identify as many relevant randomized controlled trials (RCTs) as possible, regardless of their language of publication. To this end, the Information Specialist of The Cochrane STI Group was contacted to conduct a complete search strategy, which was constructed using controlled vocabulary and text terms. The search was conducted in the MEDLINE, EMBASE, and LILACS databases. Grey literature was also consulted through the references listed in the included studies. The search was updated to September 30, 2016 (available at: https://www.crd.york.ac.uk/PROSPEROFILES/51553_STRAT-EGY_20161121.pdf) and citations were exported to EndNote version X6 (Thomson Reuters, New York, NY, USA). All published RCTs were included with no language restrictions.

The participants in the trials were non-immunocom-promised men and non-pregnant women that required an indwelling urinary catheter as part of their inpatient or outpatient medical treatment. Indwelling urinary catheters are as those inserted for at least 24 hours in the urinary tract. The intervention of interest was the use of any non-pharmacological intervention during catheter insertion versus the use of placebo, or pharmacological interventions, or no intervention.

The primary outcomes were symptomatic urinary infection, time elapsed until the first episode of urinary infection, recurrent infection, bacteremia, asymptomatic bacteriuria, and major adverse effects associated with the intervention. The main secondary outcomes were satisfaction of participants, quality of life, mild adverse events, and cost-effectiveness of the intervention.

First, two authors (XSM and CFGA) selected the studies individually, and then, through consensus, they made the final selection of studies to be included in the systematic review. In addition, the other two authors (JAG and JLMV) assessed the risk of bias of the included RCTs using the tool suggested in the CHB: 16 sequence generation and allocation concealment, blinding of participants, incomplete outcome data, selective reporting, and other risks of bias. Disagreement was resolved by consensus among all authors. All domains were assessed as low, high, or unclear risk of bias. The GRADE system was used for rating the quality of the evidence.

Results are presented as risk ratios (RR) with 95% confidence intervals (CI) and mean differences. I2 statistic and Chi2 test values were used to assess statistical heterogeneity, which was considered relevant if the I2 statistic was greater than 40% and if there was a low p-value (less than 0.10) in the Chi2 test for consistency. Statistical analyses were performed using Rev Man, 18 with fixed-effect meta-analysis for combining data, unless there was substantial heterogeneity, while a random-effects model was implemented if there was clinical or significant statistical heterogeneity.

Results

The searches yielded 311 references, and 214 were screened after removing duplicates. Of those, the full texts of 30 references were reviewed. A total of 8 studies met the inclusion criteria; 19-2612 papers were excluded because they were not RCTs, 6 trials implemented a different intervention and finally, 4 studies recruited a different kind of population. The following PRISMA diagram illustrates the selection process (Figure 1). For excluded RCTs and the rationale for exclusion, see Appendix A.

Source: Own elaboration.

Figure 1 PRISMA flow chart. 

The selected RCTs were published from 1985 to 2012 and recruited participants from Sweden, the United Kingdom, Hong Kong, New Zealand, the USA and Belgium; 2 of those studies were funded by the industry.21,25 Retrieved studies involved 8 718 men and women with an age range between 20 and 95 years, who required long-term catheterization (>24 hours) during their hospital stay due to general, 20,24 cardiac, 22 orthopedic25 or elective urologie surgery; 26 3 studies did not include information in this regard. 19,21,23 The studies excluded patients with current or previous urinary tract infection, recent exposure to antibiotics, history of diabetes or pelvic radiotherapy, or with a recent illness (Table 1).

Table 1 Main characteristics of the studies selected. 

Author Carappetti et al. 19 Cheung et al. 20 Liedberg & Lundberg et al.21 Nacey et al. 22 Pickard et al.23 Riley et al. 24 Stenzelius et al. 25 Verleyen et al. 26
Year 1994 2008 1990 1985 2012 1995 2011 1999
Study design RCT RCT RCT RCT RCT RCT RCT RCT
Title Randomized study of sterile versus non-sterile urethral catheterisation Water versus antiseptic periurethral cleansing before catheterization among home care patients: a randomized controlled trial Silver alloy coated catheters reduce catheter- associated bacteriuria Catheter induced urethritis: a comparison between latex and silicone catheters in a prospective clinical trial Antimicrobial catheters for reduction of symptomatic urinary tract infection in adults requiring short-term catheterisation in hospital: a multicentre randomised controlled trial A large randomized clinical trial of a silver- impregnated urinary catheter: lack of efficacy and staphylococcal superinfection Noble metal alloy-coated latex versus silicone Foley catheter in short-term catheterization: a randomized controlled study Clinical application of the Bardex IC Foley catheter
Country England Hong Kong Sweden New Zealand United Kingdom Salt Lake City Sweden Belgium
Population Elective surgery Elective Cardiac surgery Surgery or Internal Medicine Elective orthopedic surgery Elective urologic surgery
Age 22-91 mean 80.8 48-52 20-73 mean 59 mean 61.4 20-95 --
Number of participants 156 20 120 100 6 394 1 309 439 180
Intervention Sterile catheterisation Sterile catheterization Silver coated latex catheter Silicone catheter Silver alloy-coated latex catheter Silver coated silicone catheter Noble metal alloy coated latex catheter Silver-coated catheter
Comparison Clean/ non-sterile catheterisation Sterile water Teflonised latex catheter Latex catheter PTFE-coated latex catheter Silicone elastomer-coated latex catheter Non-coated silicone catheter Latex catheters
Primary outcomes Bacteriuria Symptomatic bacteriuria Bacteriuria Urethritis Symptomatic CAUTI Bacteriuria Bacteriuria Bacteriuria
Secondary outcomes Costs Microbiologically confi rmed symptomatic CAUTI - Quality of life - Catheter-related symptoms Catheter- related symptoms Catheter- related symptoms Time to develop bacteriuria

RCT: Randomized controlled trial; PTFE: Polytetrafluoroethylene; CAUTI: Catheter-Associated Urinary Tract Infection.

Source: Own elaboration.

The intervention most commonly implemented was silicone-coated latex catheter in 5 studies; 21,23-26 2 studies described sterile catheterization as the intervention; 19,20 and the remaining trials used non-coated silicone catheters. 22The comparator in 6 studies was non-coated silicone urinary catheter21-26 and in the other 2 it was clean/non-sterile catheterization technique. 19,20

Sterile catheterization is the process of cleaning the urethral meatus utilizing an antiseptic aqueous solution and avoiding contact with the practitioner's gloves. The catheter is inserted following a non-touch technique and using forceps after lubrication with sterile lignocaine gel. On the other hand, participants assigned to non-sterile catheterization used sterile water and non-sterile gloves. 19,20

The included RCTs assessed at least one predetermined outcome, with some minor differences in the definition of the results between papers. A total of 7 studies reported bacteriuria as the primary outcome19-21,23-26 using as threshold 105 colony-forming units (CFU) per milliliter (mL), except for one study24 that defined a lower threshold (>1.000 CFU/mL). Three studies reported symptomatic urinary infection -defined as penile discomfort and purulent urethral discharge22 reported by the patient or the caregiver-, bacterial colonization in urine, 20 or the presence of symptoms accompanied by antibiotic prescription. 23

Urine specimens were collected at the time of catheterization, 19-21,25 at the time of catheter removal, 21,24,26 or within 7 to 14 days20,23,25 after catheterization. The secondary outcomes reported by the trials were quality of life (EuroQol scale; EQ-5D), 23 mild adverse events, 24-26 and costs of the intervention. 19 For this study, data for primary outcomes (time elapsed until the first episode, recurrent urinary tract infection, bacteremia, or significant side effects), or the secondary outcome (patient satisfaction) were not collected. Finally, follow-up of participants ranged between 3 and 14 days, 19,21,25,26 6 weeks, (23 or 6 months. 22

According to the GRADE system, publications bias should be assessed using a funnel plot and asymmetry statistical tests if 10 or more studies are included in a systematic review or a meta-analysis; therefore, since only 8 studies were included in this review, a funnel plot was not required to assess publication bias. The RCTs included (n=8) had limitations regarding the use of risk of bias tools, which are detailed in Figure 2 and Appendix B. In this regard, 4 trials19,22,23,25 implemented a valid sequence generation method and 3 established an adequate allocation concealment process (Figure 2), 19,22,23,25 making selection bias unclear.

Source: Own elaboration.

Figure 2 Risk of bias assessment of the included randomized clinical trials.  

Regarding blinding, 5 studies19-21,24,26 did not report the method implemented. However, the studies were considered to be at low risk of detection and performance bias since the results were objectively appraised (i.e., culture) and, therefore, the lack of blinding is unlikely to affect confidence in the results. One study22 was masked to the allocated intervention because of the similarity of the interventions, making performance and detection bias unlikely. Finally, 23,25 the participants of 2 trials were not masked to the intervention because of the distinctive appearance of the catheters; based on the subjective nature of some outcomes (i.e., mild adverse events of the intervention), these RCTs were considered as having high risk of performance and detection bias.

With respect to possible attrition bias, 2 RCTs22-24 appropriately mentioned the exclusions (<20%) and the reasons were balanced between the arms, making incomplete outcome data bias unlikely. For 6 studies, trial protocols were not available and were assessed as having unclear risk of bias. 19-22,24,26 Finally, all RCTs were at low risk of other potential sources of bias. Table 2 presents a detailed description of the quality of the evidence.

Table 2 Quality of the evidence regarding non-pharmacological interventions at the time of insertion of an indwelling catheter for reducing urinary tract infection in non-immunocompromised adults. 

RR: Relative risk.

* Two trials have high risk of detection, attrition and reporting bias,

† Heterogeneity I2=63%.

‡ CI overlaps the line of no difference and failed to exclude appreciable benefit or harm.

** Relevant heterogeneity 12= 71%.

†† Heterogeneity 12=0%.

‡‡ High risk for detection, attrition, and selective reporting.

Source: Own elaboration.

Low-quality evidence showed that, compared to the control group, the use of non-pharmacological intervention does not seem to decrease the frequency of symptomatic urinary infections20,22,23,25 (RR 0.90, 95%CI: 0.61-1.35; 4 762 participants, 4 RCTs; 12 statistic: 63%), or improve quality-of-life scores (MD -0.01 EQ-5D scale; 95%CI: -0.03-0.01,1 RCT) (Figure 3). However, there was evidence of differences between groups in terms of asymptomatic bacteriuria episodes19-21,23-26 (RR 0.67, 95%CI: 0.48-0.94; 5 810 participants, 7 studies; 12 statistic: 71%) (Figure 4) and the rate 0.96; 4 157 participants, 2 trials; 12 statistic: 0%) of mild adverse events23,25 (RR 0.84, 95%CI: 0.74- (Figure 5).

Source: Own elaboration.

Figure 3 Symptomatic urinary infection as an outcome after performing any of the non-pharmacological interventions during catheter insertion.  

Source: Own elaboration.

Figure 4 Asymptomatic bacteriuria as an outcome after performing any of the non-pharmacological interventions during catheter insertion.  

Source: Own elaboration.

Figure 5 Mild adverse events as outcomes after performing any of the non-pharmacological interventions during catheter insertion. 

Carappetti etal.19 measured resource and capital expenditure associated with the implementation of sterile interventions compared to clean catheterization. The recruited participants underwent preoperative urethral catheterization and the direct costs were estimated based on the supplies utilized: gloves, sterile gown, catheter pack, lignocaine gel, vaginal gel, sterile water, 10-milliliter syringes, catheter bag, Foley catheter, scrub solution, and skin preparation. Compared with clean catheterization, sterile technique doubled care-associated costs, as the total cost per participant was close to GBP 7.49 versus GBP 3.06, respectively, in 1994. This study did not assess indirect or long-term intervention-related costs.

To explore heterogeneity, a subgroup analysis was performed for the asymptomatic bacteriuria outcome. The tests for subgroup effect were not significantly different when the source of heterogeneity was explored (p=0.54, data not shown). Subgroup analyses did not explain the variability in the summary effect measures for the asymptomatic bacteriuria outcome, so these findings should be interpreted with caution. The outcomes symptomatic urinary infection, time elapsed until the first episode of urinary tract infection and major adverse effects derived from the intervention were not analyzed because of the sparse information provided by the RCTs included in the present review.

Discussion

This systematic review retrieved low-quality evidence to support the implementation of non-pharmacological interventions at the time of urinary catheter insertion to reduce the risk of infection in non-immunocompromised adults with indwelling catheterization. Regardless of the comparison, non-pharmacological interventions seem to reduce the frequency of asymptomatic bacteriuria episodes and the rate of mild adverse events.

One of the strengths of this systematic review is that its methodology was planned, developed and published at PROSPERO before conducting it, and all the methods that were established at that time were followed while doing the review, namely, a comprehensive literature search without language or date restrictions, two reviewers in charge of the selection of studies, data extraction and bias risk assessment using the tool suggested in the CHB; 16 evidence ranking by means of the GRADE approach; and the use of subgroup analyses and methods for statistical analysis.

One of the weaknesses of the present review is that the quality of the evidence found was very low according to the GRADE system; therefore, further research is highly likely to change the conclusions presented here. On the other hand, the RCTs included were heterogenous and publication bias was not assessed using a funnel plot dueto the recommendation of the GRADE system regarding the detection of this type of bias when less than 10 studies are included in a meta-analysis or a systematic review.

There were no other systematic reviews evaluating the impact of non-pharmacological interventions for catheter insertion in cases of urinary tract infection that require long-term catheterization. Consistent with this review, a Cochrane review concludes that the use of silver-coated catheters reduces the frequency of asymptomatic bacteriuria, but the studies reviewed there only assessed short-term catheterization.27

Conclusion

Very low-quality evidence shows that non-pharmacological interventions at the time of urinary catheter insertion in non-immunocompromised adults could reduce the frequency of asymptomatic bacteriuria episodes and mild adverse events, without reducing the rate of symptomatic urinary infections or improving quality-of-life scores.

Acknowledgements

None stated by the authors.

References

1. Mazzo A, Bardivia CB, Jorge BM, Souza Júnior VD, Fumincelli L, Mendes IAC. Cateterismo urinário permanente: prática clínica. Enfermería Global. 2015;14(2):50-9. http://doi.org/c9br. [ Links ]

2. Jiménez-Mayorga I, Soto-Sánchez M, Vergara-Carrasco L, Cordero-Morales J, Rubio-Hidalgo L, Coll-Carreño R, et al. Protocolo de sondaje vesical. Bibl Lascasas. 2010 [cited 2017 Jan 20];6(1). Available from: Available from: https://bit.ly/2YUoyRs . [ Links ]

3. Cifuentes M. Prácticas para la prevención de infecciones asociadas a la atención en salud: Norma de prevención de infección urinaria asociada al catéter urinario permanente (ITU/CUP). Santiago de Chile: Hospital Clínico Universidad De Chile; 2011. [ Links ]

4. Mizerek E, Wolf L. To Foley or Not To Foley: Emergency Nurses' Perceptions of Clinical Decision Making in the Use of Urinary Catheters in the Emergency Department. J Emerg Nurs. 2015;41(4):329-34. http://doi.org/f7h4t7. [ Links ]

5. Gould CV, Umscheid CA, Agarwal RK, Kuntz G, Pegues DA. Guideline for prevention of catheter-associated urinary tract infections 2009. Infect Control Hosp Epidemiol. 2010;31(4):319-26. http://doi.org/fbp5qc. [ Links ]

6. Colombia. Instituto Nacional de Salud. Protocolo de Vigilancia en Salud Pública: Infecciones asociadas a dispositivos. Bogotá D.C.: Ministerio de Salud; 2016. [ Links ]

7. Álvarez CA, Cortés JA, Gómez CH, Fernández JA, Sossa MP, Beltrán F, et al. Guías de práctica clínica para la prevención de infecciones intrahospitalarias asociadas al uso de dispositivos médicos. Revista Infectio. 2010;14(4):292-308. [ Links ]

8. Macal-Arriaza MR. Investigación acción sobre técnica de colocación y manejo del catéter vesical en el hospital de Chiquimula [tesis]. Chiquimula: Universidad de San Carlos de Guatemala; 2014. [ Links ]

9. Gómez J, Muñoz R, Baños V, Gómez G. Tratamiento de las infecciones urinarias adquiridas en la comunidad: perspectivas actuales y enfoque clínico del paciente. Rev Esp Quimioter. 2005;18(4):319-27. [ Links ]

10. Diez BL, Ossa-Montoya R. Cateterismo Uretral: un tema para la reflexión. Invest Educ Enferm. 2005;23(2):118-36. [ Links ]

11. Organización Panamericana de la Salud (OPS). Guía para la prevención y el control de las infecciones en servicios de salud, dirigida a estudiantes de las carreras de ciencias de la salud. La Paz: OPS; 2007 [cited 2019 Jul 12]. Available from: Available from: https://bit.ly/2YCuY8p . [ Links ]

12. Márquez-Rivero PA, Álvarez-Pacheco I, Márquez-Rivero A. Protocolo basado en la evidencia de los cuidados de los catéteres urinarios en unidades de cuidados intensivos. Enfermería Intensiva. 2012;23(4):171-78. http://doi.org/f2jwpm. [ Links ]

13. Martínez JA, Cobos-Trigueros N, Mensa J. Infección urinaria asociada a catéteres urinarios. In: Pigrau C, editor. Infección del tracto urinario. España: Salvat; 2013. p. 121-36. [ Links ]

14. Flower A, Wang LQ, Lewith G, Liu JP, Li Q. Chinese herbal medicine for treating recurrent urinary tract infections in women. Cochrane Database Syst Rev. 2015;(6):CD010446. http://doi.org/c778. [ Links ]

15. Schwenger EM, Tejani AM, Loewen PS. Probiotics for preventing urinary tract infections in adults and children. Cochrane Database Syst Rev. 2015;(12):CD008772. http://doi.org/c78b. [ Links ]

16. Higgins JT, Green S, editors. Cochrane Handbook for Systematic Reviews of Interventions. Version 5.1.0. London: The Cochrane Collaboration; 2011. [ Links ]

17. Moher D, Liberati A, Tetzlaff J, Altman DG. Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement. Ann Intern Med. 2009;151(4):264-9. http://doi.org/bpq5. [ Links ]

18. Review Manager (RevMan) [computer program]. Version 5.3. Copenhagen: The Nordic Cochrane Centre: The Cochrane Collaboration; 2014. [ Links ]

19. Carappetti E, Andrews SM, Bentley PG. Randomised study of sterile versus non-sterile uretrhal catheterisation. Ann R Coll Surg Engl. 1996;78(1):59-60. [ Links ]

20. Cheung K, Leung P, Wong YC, To OK, Yeung YF, Chang MW, et al. Water versus antiseptic periuretrhal cleansing before catheterization among home care patients: a randomized controlled trial. Am J Infect control. 2008;36(5):375-80. http://doi.org/fqcc64. [ Links ]

21. Liedberg H, Lundberg T. Silver Alloy Coated Catheters Reduce Catheter-associated Bacteriuria. Br J Urol. 1990;65(4):379-81. http://doi.org/d8mqm5. [ Links ]

22. Nacey JN, Tulloch AG, Ferguson AF. Catheter-induced urethritis: a Comparison Between Latex and Silicone Catheters in a Prospective Clinical Trial. Br J Urol. 1985;57(3):325-8. http://doi.org/fq3pz6. [ Links ]

23. Pickard R, Lam T, MacLennan G, Starr K, Kilonzo M, McPherson G, et al. Antimicrobial catheters for reduction of symptomatic urinary tract infection in adults requiring short-term catheterisation in hospital: a multicentre randomised controlled trial. Lancet. 2012;380(9857):1927-35. http://doi.org/f2fgq5. [ Links ]

24. Riley DK, Classen DC, Stevens LE, Burke JP. A large randomized clinical trial of a silver-impregnated urinary catheter: Lack of efficacy and staphylococcal superinfection. Am J Med. 1995;98(4):349-56. http://doi.org/dn8j4h. [ Links ]

25. Stenzelius K, Persson S, Olsson UB, Stjarneblad M. Noble metal alloy-coated latex versus silicone Foley catheter in short-term catheterization: a randomized controlled study. Scand J Urol Nephrol. 2011;45(4):258-64. http://doi.org/dvkd3v. [ Links ]

26. Verleyen P, de Ridder D, van Poppel, Baert L. Clinical Application of the Bardex IC Foley Catheter. Eur Urol. 1999;36(3):240-6. http://doi.org/dgskts. [ Links ]

27. Lamb TB, Omar MI, Fisher E, Gillies K, MacLennan S. Types of indwelling urethral catheters for short-term catheterisation in hospitalised adults. Cochrane Database Syst Rev. 2014;23;(9): CD004013. http://doi.org/f8mcww. [ Links ]

Sáenz-Montoya X, Grillo-Ardila CF, Amaya-Guio J, Muñoz-Vesga J. Use of non-pharmacological interventions during urinary catheter insertion for reducing urinary tract infections in non-immunocompromised adults. A systematic review. Rev. Fac. Med. 2020;68(1):24-33. English. doi: http://dx.doi.org/10.15446/revfacmed.v68n1.74383.

Sáenz-Montoya X, Grillo-Ardila CF, Amaya-Guio J, Muñoz-Vesga J. [Intervenciones no farmacológicas durante la inserción de un catéter urinario permanente para reducir las infecciones en adultos inmunocompetentes. Revisión sistemática]. Rev. Fac. Med. 2020;68(1):24-33. English. doi: http://dx.doi.org/10.15446/revfacmed.v68n1.74383.

Conflicts of interest None stated by the authors.

Funding This study was financed through a HERMES grant (code 33595) awarded by the Faculty of Nursing of Universidad Nacional de Colombia, Bogotá Campus, as stated in Resolution 073 of 2016 (Act 11, May 12, 2016).

Supplemental Digital Content

Appendix A Characteristics of the excluded studies. 

Supplemental Digital Content

Appendix B Summary of risk of bias according to the authors of this review for each included study 

Received: August 21, 2018; Accepted: November 21, 2018

*Corresponding author: Jairo Amaya-Guío. Departamento de Obstetricia y Ginecología, Facultad de Medicina, Universidad Nacional de Colombia. Carrera 30 No. 45-03, building: 471, office: 205. Telephone number: +57 1 3165000, ext.: 15168. Bogotá D.C. Colombia. Email: jaamayagu@unal.edu.co.

Creative Commons License This is an open-access article distributed under the terms of the Creative Commons Attribution License