SciELO - Scientific Electronic Library Online

vol.68 issue3Torque estimation based on surface electromyography: potential tool for knee rehabilitationNeurotoxical activity of Micrurus snake venom and methods for its analysis. A literature review author indexsubject indexarticles search
Home Pagealphabetic serial listing  

Services on Demand




Related links

  • On index processCited by Google
  • Have no similar articlesSimilars in SciELO
  • On index processSimilars in Google


Revista de la Facultad de Medicina

Print version ISSN 0120-0011 vol.68 no.3 Bogotá July/Sept. 2020  Epub Nov 25, 2020 

Review article

Cnidoscolus aconitifolius: therapeutic use and phytochemical properties. Literature review

Cnidoscolus aconitifolius: usos terapéuticos y propiedades fitoquímicas. Revisión de la literatura

Verónica Bautista-Robles1 

Gabriel Guerrero-Reyes1

Gabriel Isaac Sánchez-Torres1 

Felipe de Jesús Parada-Luna1

Juan José Barrios-Gutiérrez1 

Dehuí Vázquez-Cerero1 

Gudelia Martínez-Sala1 

José Isaías Siliceo-Murrieta1 

Ruth Ana María González-Villoría1 

Hady Keita1  * 

1 Universidad de la Sierra Sur - Postgraduate Studies Division - Master's in Public Health - Miahuatlán de Porfirio Díaz - Oaxaca - México.



Medicinal plants have been traditionally used to cure or alleviate infectious and non-infectious diseases. They are widely accepted due to their low cost and low toxicity indexes. These plants are frequently used in cases involving skin irritation, superficial wounds, insect bites, and snake bites.


To compile available evidence on the main therapeutic uses and phytochemical components of Cnidoscolus aconitifolius (popularly known as chaya), a plant that grows in tropical regions of Mexico and Central America.

Materials and methods:

A literature review of studies on C. aconitifolius published until 2017 was conducted in the BIREME, PubMed/Medline, Elsevier and SciELO databases. Descriptors "Cnidoscolus" and "aconitifolius" were used for the literature search, and no language restrictions were applied.


82 articles were retrieved after completing the initial search. Once the studies were filtered by title (descriptors in the title) and duplicates were removed, 18 articles were reviewed. Based on the information found, it was possible to confirm that this plant has multiple health benefits.


The traditional therapeutic use of Cnidoscolus aconitifolius is backed by scientific evidence. Therefore, further research aimed at identifying new phytochemical properties of this plant should be conducted to establish alternative therapies for treating different conditions.

Keywords: Plants, Medicinal; Phytochemicals; Therapeutic Uses (MeSH)



El uso tradicional de plantas medicinales para tratar diferentes enfermedades, ya sean infecciosas o no, es ampliamente aceptado debido a su bajo costo y sus bajos índices de toxicidad. Estas plantas son frecuentemente usadas en casos que involucran irritaciones de la piel, heridas superficiales, picaduras de insectos y mordeduras de víboras.


Recopilar la información disponible sobre los principales usos terapéuticos y los componentes fitoquímicos de Cnidoscolus aconitifolius, una planta conocida popularmente como chaya y que crece en regiones tropicales de México y Centroamérica.

Materiales y métodos.

Se realizó una revisión de la literatura sobre C. aconitifolius publicada hasta 2017 en las bases de datos BIREME, PubMed/Medline, Elsevier y SciELO. Para la búsqueda se emplearon los descriptores "Cnidoscolus" y "aconitifolius", y no se aplicaron filtros de idioma.


Se identificaron 82 artículos luego de completar la búsqueda inicial. Después de filtrar los estudios por título (presencia de descriptores de búsqueda en el título) y remover duplicados, se incluyeron 18 artículos en la revisión. De acuerdo a la información encontrada, fue posible confirmar que esta planta ofrece diversos beneficios para la salud.


El uso terapéutico tradicional de la chaya está sustentado por evidencia científica, por lo que se sugiere realizar más investigaciones centradas en la identificación de nuevas propiedades fitoquímicas de esta planta y, así, establecer alternativas terapéuticas para distintas afecciones.

Palabras clave: Plantas medicinales; Fitoquímicos; Usos terapéuticos (DeCS)


About 80% of people living in developing countries practice traditional medicine as an alternative therapy for their health care. Specifically, the use of medicinal plants in therapy (defined as any plant species that can be used for therapeutic purposes due to its composition or whose active ingredients can serve as precursors for the synthesis of new drugs), also known as phytotherapy, is quite widespread worldwide. It is worth noting that around 67% of the species used in these types of therapies come from least developed and developing countries.1-6

Traditional medicine is based on folk knowledge, which determines its efficacy through observable benefits. This type of medication may pose challenges; for example, in popular phytotherapy, it is very difficult to control the dose and quality of the product, which can lead to risks and damage to health. This problem is mainly explained by the fact that many traditional remedies are made from wild plants whose chemical components can vary due to genetic or environmental reasons.7,8 It should be noted that ethnobotany has no scientific validation.9-10

The traditional use of medicinal plants to treat both infectious and non-infectious diseases has been widely accepted since ancient times due to their low cost, accessibility, and low toxicity rates compared to synthetic products.11,13 Humans commonly resort to this therapeutic option in the presence of skin irritations, wounds, insect bites, and snake bites.14,15

Currently, there is an exponential increase in the use of phytotherapy to maintain an adequate state of general health. In this regard, the World Health Organization (WHO) states that more than two thirds of the world's population use or have used at least one medicinal plant to treat some condition.4

Chronic non-communicable diseases are a new challenge in the fight to improve global health and are a public health concern despite the progress made by the pharmaceutical industry. Moreover, it should be noted that some populations do not have easy access to medicines and medicinal plants are their first, or even only, treatment option.

In this context, a relevant example of the use of phytotherapy is chaya (Cnidoscolus aconitifolius), a plant of the genus Cnidoscolus that belongs to the family Euphorbiacea, which has been attributed different benefits forthe treatment and control of certain pathologies. The family Euphorbiacea comprises 50 species, of which 20 are considered endemic to Mexico and are distributed mainly in tropical and subtropical zones, Mesoamerica being the area where they are most produced and where their domestication is most frequent.17-19

Hypoglycemic,20 antioxidant,21 analgesic and anti-inflammatory effects22,24 are the main benefits attributed to chaya. It is commonly used to treat rheumatism, gastrointestinal disorders25 and inflammatory diseases,26,27 and it has also been reported that it has an important nutritional contribution as poultry feed, especially in Africa.28 In recent years, to measure its efficacy and safety, various investigations have analyzed the components of this plant, the leaves being the most studied part.29,30

The objective of this research was to review the available literature on the main medical uses and phytochemical components of C. aconitifolius to answer the question:

Is there sufficient scientific evidence on the therapeutic properties of chaya to treat human pathologies?

Materials and methods

A literature review on C. aconitifolius was conducted in the BIREME, PubMed/Medline, Elsevier and SciELO databases with the descriptors "Cnidoscolus" and "aconitifolius". The search was limited to articles published until 2017; no articles were excluded because of language restrictions or methodological reasons.

Data search

The first step was to make a general query without restrictions, and then a new search was made using the title as a filter. The strategies presented in Table 1 were applied.

Table 1 Databases analyzed and search strategies used. 

Database Search strategy (syntax) Search limits No. of articles
Elsevier TITLE(Cnidoscolus aconitifolius) Title 3
SciELO (ti : (cnidoscolus)) AND (ti : (aconitifolius)) Titulo 1
BIREME (ti : (Cnidoscolus aconitifolius)) Titulo 15
PubMed/ Medline Cnidoscolus[Title] AND aconitifolius[Title] Title 14

Source: Own elaboration.

Selection of articles

In the first search without restriction, 82 articles were retrieved. During the subsequent search, after filtering the publications by title, 33 were obtained, of which 15 were excluded because they were repeated. Finally, 18 articles were included in the research. The algorithm for selecting the articles of interest is shown in Figure 1.

Source: Own elaboration.

Figure 1 Flow chart used for selection of the articles of interest.  

Data collection

The selected articles were reviewed to synthesize, analyze, and facilitate the understanding of the results. The relevant data of each study were summarized in two groups: main phytochemical constituents of C. aconitifolius and medicinal properties of C. aconitifolius.

Captured photographs

During the study, some photographs of C. aconitifolius were taken (Figure 2) to complement the study with visual material. The pictures were taken using a Sony DSC-H400/ VC E33 digital camera on January 21, 2018, in the community of Santo Tomás Tamazulapam (district of Miahuatlán de Porfirio Díaz, state of Oaxaca, Mexico), which is located in the following coordinates: latitude: 16.2705 and longitude:

Source: Documents obtained during the study.

Figure 2 Photographs of Cnidoscolus aconitifolius. A) flower buds and plant flowers; B) lamina, primary and secondary veins, and petiole; C) stem; D) canopy.  


Thirty-three research articles were included and classified according to the year of publication as shown in Figure 3. The largest number of articles about C. aconitifolius were published in 2010 and 2016 (8 each year).

Source: Own elaboration.

Figure 3 Number of publications on Cnidoscolus aconitifolius. The arrow indicates the year of publication of the first study found on this plant.  

By refining the articles and eliminating duplicates, a final sample of 18 articles was obtained with which the constituents (Table 2) and the final analysis of the data was carried out. The publications were organized according to the main phytochemical medicinal properties of C. aconitifolius (Table 3).

Table 2 Main phytochemicaI constituents of Cnidoscolus aconitifolius. 

Authors Year Type of study Part of the plant studied Phytochemical constituents
Donkoh et al.28 1990 Phytochemical study of the dry leaf Leaves High dietary protein potential for animals and toxic hydrocyanic glycosides that are degraded by cooking.
Sarmiento-Franco et al.29 2003 Phytochemical study Leaves Raw fiber (140 g/kg), protein (305 g/kg), calcium (15.3 g/ kg) and seven amino acids: alanine, arginine, aspartic acid, glutamic acid, leucine, isoleucine, and phenylalanine.
EscaIante-Erosa et al.30 2004 Epicuticular wax study Tall l eaves Three triterpenoids: amirenone, B-amyrin acetate, and a-amyrin acetate.
Numa et al.31 2015 Phytochemical study Leaves FIavonoids (hispidulin sulfate, eucalyptin and epigallocatechin di-O-gallate), sesquiterpene (triptofordin D1), xanthones (moreolic acid), polyanxanthone c, cadensin g, arvixanthone d and lignan (tiegusanin f).
Oyagbemi et al.32 2011 Phytochemical screening Leaves FIavonoids, alkaloids, saponins, tannins, magnesium, manganese, iron, potassium, phosphate, and zinc.
Adaramoye et al.33 2011 Clinical study on protection from liver damage Leaves Tannins, alkaloids, saponins, anthraquinones, flavonoids, cardiac glycosides, and phlobatannins.
Jaramillo-Jaramillo et al.34 2015 Phytochemical study Leaves of adult flowering plants Fatty acids, triterpenes, and sugars.
Jiménez-Aguilar et al.35 2015 Phytochemical study Dry leaves Calcium, magnesium, potassium, phosphorus, sulfur, iron, sodium, vitamin C (more abundant than in other green plants), as well as phenolic compounds at high levels, and flavonoids at medium levels.
Morales-Aivarado et al.36 2016 Phytochemical study Dehydrated leaves Cyanogenic glycosides precursors of hydrocyanic acid, although it was proved to be easily eliminated by heat treatment.
Awoyinka et al.37 2007 Phytochemical study Dry leaves Alkaloids, tannins, phlobatannins, saponins, and cardiac glycosides.

Source: Own elaboration.

Table 3 Medical properties of Cnidoscolus aconitifolius. 

Authors Year MedicinaI potentiaI of the plant described Animal model Study element Main efficacy results
Azeez et al.19 2010. Antioxidant effect 25 male Wistar rats weighing from 100 to 250 grams Leaves C. aconitifolius improved the hematological parameters of alloxan-induced diabetes.
Saba et al.22 2010 Hepatoprotective and antioxidant effect 30 male Wistar rats weighing from 220 to 250 grams Leaves C. aconitifolius showed a significant restoration of hematological parameters and a decrease in blood ureic nitrogen and creatinine levels.
Oyagbemi et al.23 2010 Hepatoprotective effect against paracetamol damage 25 healthy male Wistar rats weighing from 220 to 250 grams Leaf extract obtained from ethanol C. aconitifolius had a hepatoprotective effect against paracetamol.
Onasanwo et al.24 2011 Analgesic and antiinflammatory effect 30 Sprague-Dawley rats/mice weighing from 140 to 160 grams. Leaves C. aconitifolius demonstrated significant anti-inflammatory and analgesic effects.
Adaramoye et al.33 2011 Stimulation of insulin secretion 6-week old male Wistar rats weighing from 170 to 180 grams Leaves C. aconitifolius showed hepatoprotective and antioxidant effects, as well as protection against ethanol-induced poisoning.
Jaramillo-Jaramilloet al.34 2015 Antioxidant effect Male Wistar rats Leaves C. aconitifolius had an antioxidant effect but not a hypoglycemic effect.
Sarmiento-Franco et al.38 2002 Fattening effect on corn-fed chickens Two-week old Hubbard chickens and day-old Ross chickens Leaf flour C. aconitifolius improved fattening of chickens on low-protein diets.
Oladeinde et al.39 2007 Hypoglycemic effect 4-8-week-old male mice weighing 25 grams Leaves C. aconitifolius stimulated dormant β cells to secrete insulin.
Adaramoye & Aluko40 2011 Nephro-protective effect of metanol extract against chronic etanol exposure. 42 male Wistar rats weighing from 170 to 180 grams Leaf extract obtained from ethanol C. aconitifolius had a nephroprotective effect against chronic ethanol exposure and reduced glucose, protein, gammaglutamyltransferase, and creatinine clearance levels.
Achi et al.41 2017 Hypoglycemic, Anticholesterolemic and antihypertriglyceridemic effect. Albino and healthy male rats weighing 120 to 130 grams Leaves C. aconitifolius reduced blood glucose levels, increased weight and serum insulin level, and had a hypoglycemic, antihypercholesterolemic, insulin modulating and antihypertriglyceridemic action.

Source: Own elaboration.


According to the available evidence, there are several investigations on C. aconitifolius19,22-24,28-41 that confirm that its use as a medicinal plant has some benefits in the treatment of several diseases or injuries42,43. Therefore, further studies on the phytochemical properties and posible therapeutic uses of this plant should be conducted to identify new therapeutic alternatives for the treatment of different conditions 24,37, which will undoubtedly improve the quality of life of communities where traditional medicine is the main form of medical therapy.

Aguilar et al.44 state that C. aconitifolius, besides having medicinal properties, is used as a vegetable and as fodder, which coincides with what is reported by Ross-Ibarra & Molina-Cruz.45 Furthermore, according to Parra-Tabla et al.,46 this plant can be consumed at any time as long as it has not lost more than 50% of its leaves, which depends on the type of climate in which it develops.

Some studies 22,23,33,40 describe the benefits of C. aconitifolius to treat hepatotoxicity and hematotoxicity since the plant components help reduce toxicity. Likewise, other works39,41 have shown that chaya plays a key role in reducing high glucose levels in animal models.

It is worth mentioning that the results also show that C. aconitifolius has antioxidant19,34,35 and antimicrobial37,47 properties due to its secondary metabolites (flavonoids, tannins, saponins,30-32 etc.).48,49 Similarly, it was found that this plant contains phenolic components, which are the most abundant group of non-energy substances in foods of plant origin.50

Other species in the genus Cnidoscolus also show health benefits.42,43 For example, Poot-López et al.51 reported the diuretic and hypoglycemic effects of Cnidoscolus chayamansa. During this review, we also found that Donkoh et al.52 suggested the inclusion of chaya in the food industry as a potential ingredient for poultry diet. In the study by Saba et al.22 on the effects of C. aconitifolius leaf extract in rats with liver damage induced by carbon tetrachloride, it was found that the compounds of the plant restore the levels of hematological parameters, blood ureic nitrogen, and creatinine. Finally, Oyagbemi et al.,23 In an analysis of the anti-diabetic properties of ethanolic extract of chaya made in male Wistar rats with alloxan-induced diabetes mellitus, showed that C. aconitifolius extract significantly reduces blood glucose and plasma cholesterol levels.


C. aconitifolius is a plant species that has a significant protein content and is rich in flavonoids, tannins, and saponins. These characteristics grant it hypoglycemic, hepatoprotective, nephroprotective, anti-inflammatory and antioxidant properties.

The safety and efficacy of the traditional therapeutic use of chaya is supported by scientific evidence. Therefore, further research should be carried out focusing on the identification of new phytochemical properties of this plant and, thus, establish therapeutic alternatives for different conditions.


To the Postgraduate Studies Division of the Universidad de la Sierra Sur for their support for the preparation of this review.


1. World Health Organization. The promotion and development of traditional medicine. Geneva; World Health Organization Technical Report Series No. 622; 1978. [ Links ]

2. Chen SL, Yu H, Luo HM, Wu Q, Li CF, Steinmetz A. Conservation and sustainable use of medicinal plants: problems, progress, and prospects. Chin Med. 2016;11(37):1-10. [ Links ]

3. Tene V, Malagón O, Finzi PV, Vidari G, Armijos C, Zaragoza T. An ethnobotanical survey of medicinal plants used in Loja and Zamora-Chinchipe, Ecuador. J Ethnopharmacol. 2007;111(1):63-81. [ Links ]

4. Organización Mundial de la Salud (OMS). Nuevas directrices de la OMS para fomentar el uso adecuado de las medicinas tradicionales. Ginebra: OMS; 2004 [cited 2019 Mar 26]. Available from: Available from: . [ Links ]

5. Organización Mundial de la Salud (OMS). Estrategia de la OMS sobre medicina tradicional 2002-2005. Ginebra: OMS; 2002 [cited 2019 Mar 26]. Available from: Available from: . [ Links ]

6. da silva-Lima SC, Oliveira-de Arruda G, Dias-Renovato R, Martins-Alvarenga MR. Representaciones y usos de las plantas medicinales en mayores. Rev. Latino-Am. Enfermagem. 2012;20(4):1-9. [ Links ]

7. Loraine S, Mendoza-Espinoza JA. Las plantas medicinales en la lucha contra el cáncer, relevancia para México Medicinal. Revista Mexicana de Ciencias Farmacéuticas. 2010;41(4):18-27. [ Links ]

8. Gallego C, Ferreira FJ. Plantas medicinales en el tratamiento de la Diabetes Mellitus Tipo 2: una revisión. Farmacéuticos comunitarios. 2015;7(4):27-34. [ Links ]

9. Barrueto F, Hirshon JM. Herb Poisoning. [Medscape]. 2016 [cited 2018 Jan 9]. Available from: Available from: . [ Links ]

10. Rafe R. A review of five traditionally used anti-diabetic plants of Bangladesh and their pharmacological activities. Asian Pac J Trop Med. 2017;10(10):933-9. [ Links ]

11. Gallegos-Zurita M. Las plantas medicinales: principal alternativa para el cuidado de la salud, en la población rural de Babahoyo, Ecuador. An Fac Med. 2016;77(4):327-32. [ Links ]

12. Barkaoui M, Katiri A, Boubaker H, Msanda F. Ethnobotanical survey of medicinal plants used in the traditional treatment of diabetes in Chtouka Ait Baha and Tiznit (Western Anti-Atlas), Morocco. J Ethnopharmacol. 2017; 198: 338-350. [ Links ]

13. Toscano-González JY. Uso tradicional de plantas medicinales en la vereda San Isidro, municipio de San José de Pare-Boyacá: un estudio preliminar usando técnicas cuantitativas. Acta Biol. Colomb. 2006;11(2):137-46. [ Links ]

14. Pascual DP, Pérez-Campos YE, Morales-Guerreo I, Castellanos-Coloma I, González-Heredia E. Algunas consideraciones sobre el surgimiento y la evolución de la medicina natural y tradicional. Medisan. 2014;18(10):1444-51. [ Links ]

15. Avello M, Cisternas I. Fitoterapia, sus orígenes, características y situación en Chile. Rev Med Chile. 2010;138(10): 1288-93. [ Links ]

16. Vuksan V, Sievenpiper JL. Herbal remedies in the management of diabetes: Lessons learned from the study of ginseng. Nutr Metab Cardiovasc Dis. 2005;15(3):149-60. [ Links ]

17. Jiménez-Arellanes MA, García-Martínez I, Rojas-Tomé S. Potencial biológico de especies medicinales del género Cnidoscolus (Euphorbiacea). Rev Mex Cienc Farm. 2014;45(4):1-6. [ Links ]

18. Ross-Ibarra J. Origen y domesticación de la chaya (Cnidoscolus aconitifolius Mill I. M. Johnst): La espinaca Maya. Esudios mexicanos. 2003;19(2):287-302. [ Links ]

19. Azeez OI, Oyagbemi AA, Oyeyemi MO, Odetola AA. Ameliorative effects of Cnidoscolus aconitifolius on alloxan toxicity in Wistar rats. Afr Health Sci. 2010;10(3):283-91. [ Links ]

20. Figueroa-Valverde L, Díaz-Cedillo F, Camacho-Luis A, López-Ramos M. Efectos inducidos por Ruta graveolens L., Cnidoscolus chayamansa McVaugh y Citrus aurantium L. sobre los niveles de glucosa, coIesteroI y triacilglicéridos en un modelo de rata diabética. Rev. Bras. Farmacogn. 2006;19(4):898-907. [ Links ]

21. Miranda-Velasquez L, Oranday-Cardenas A, Lozano-Garza H, Rivas-Morales C, Chamorro-Cevallos G, Cruz-Vega DE. Hypocholesterolemic activity from the leaf extracts of Cnidoscolus chayamansa. Plant Foods Hum Nutr. 2010;65(4): 392-5. [ Links ]

22. Saba AB, Oyagbemi AA, Azeez OI. Amelioration of carbón tetrachloride-induced hepatotoxicity and haemotoxicity by aqueous leaf extract of Cnidoscolus aconitifolius in rats. Niger J Physiol Sci. 2010;25(2):139-47. [ Links ]

23. Oyagbemi AA, Odetola AA. Hepatoprotective effects of ethanolic extract of Cnidocolus aconitifolius on paracetamol-induced hepatic damage in rats. Pak J Biol Sci. 2010;13(4):164-9. [ Links ]

24. Onasanwo SA, Oyagbemi AA, Saba AB. Anti-inflammatory and analgesic properties of the ethanolic extract of Cnidoscolus aconitifolius in rats and mice. J Basic Clin Physiol Pharmacol. 2011;22(1-2):37-41. [ Links ]

25. Mena-Linares Y, González-Mosquera DM, Valido-Díaz A, Escobar- Román R, Pizarro-Espín A, Castillo-Alfonso O. Actividad gastroprotectora y toxicidad aguda del extracto de hojas de Cnidoscolus chayamansa Mc Vaugh. Medicentro Electrónica. 2017;21(1):11-21. [ Links ]

26. García-Rodríguez RV, Gutiérrez-Rebolledo GA, Méndez-Bolaina E, Sánchez-Medina A, Maldonado-Saavedra O, Domínguez-Ortiz MA, et al. Cnidoscolus chayamansa Mc Vaugh, an important antioxidant, anti-inflammatory and cardioprotective plant used in Mexico. J Ethnopharmacol. 2014;151(2):937-43. [ Links ]

27. Pérez-González MZ, Gutiérrez-Rebolledo GA, Yépez-Mulia L, Rojas-Tomé IS, Luna-Herrera J, Jiménez-Arellanes MA. Antiprotozoal, antimycobacterial, and anti-inflammatory evaluation of Cnidoscolus chayamansa (Mc Vaugh) extract and the isolated compounds. Biomed Pharmacother. 2017;89:89-97. [ Links ]

28. Donkoh A, Kese AG, Atuahene CC. Chemical composition of chaya leaf meal (Cnidoscolus aconitifolius (Mill.) Johnston) and availability of its amino acids to chicks. Anim Feed Sci Technol. 1990;30(1-2):155-62. [ Links ]

29. Sarmiento-Franco L, McNab JM, Pearson A, Belmar-Casso R. The effect of chaya (Cnidoscolus aconitifolius) leaf meal and of exogenous enzymes on amino acid digestibility in broilers. Br Poult Sci. 2003;44(3):458-63. [ Links ]

30. Escalante-Erosa F, Ortegón-Campos I, Parra-Tabla V, Peña-Rodríguez LM. Chemical composition of the Epicuticular Wax of Cnidoscolus aconitifolius. Rev. Soc. Quím. Méx. 2004;48(1):24-5. [ Links ]

31. Numa S, Rodríguez L, Rodríguez D, Coy-Barrera E. Susceptibility of Tetranychus urticae Koch to an ethanol extract of Cnidoscolus aconitifolius leaves under laboratory conditions. Springerplus. 2015;4:338. [ Links ]

32. Oyagbemi AA, Odetola AA, Azeez OI. Phytochemical Investigation and Proximate Analysis on the Leaves of Cnidoscolus aconitifolius. J Med Food. 2011;14(3):322-4. [ Links ]

33. Adaramoye OA, Aluko AOyagbemi AA. Cnidoscolus aconitifolius leaf extract protects against hepatic damage induced by chronic ethanol administration in wistar rats. Alcohol Alcohol. 2011;46(4): 451-8. [ Links ]

34. Jaramillo-Jaramillo CG, García-Mir V, Cuesta-Rubio O, Campo- Fernández M, García-Simón G. Fitoquímica preliminar, actividad antioxidante e hipoglucemiante de extractos de hojas de Cnidoscolus aconitifolius (Mill.) I. M. Johnst (chaya). Rev Cubana Farm. 2015;49(3):543-56. [ Links ]

35. Jiménez-Aguilar DM, Grusak MA. Evaluation of Minerals Phytochemical Compounds and Antioxidant Activity of Mexican, Central American, And African Green Leafy Vegetables. Plant Foods Hum Nutr. 2015;70(4):357-64 [ Links ]

36. Morales-Alvarado MC, Pérez-Mejía MR, Ramírez-Cabrera CM, Silva-Lona MP, Caudillo-Ortega NA. Análisis de glucósidos cianógenos en hojas deshidratadas de Cnidoscolus Chayamansa (chaya): para la elaboración de un té “welfare tea”. Investigación y Desarrollo en Ciencia y Tecnología de Alimentos. 2016;1(2):587-90. [ Links ]

37. Awoyinka OA, Balogun IO, Ogunnowo AA. Phytochemical screening and in vitro bioactivity of Cnidoscolus aconitifolius (Euphorbiaceae). J Med Plant Res. 2007;1(3):63-5. [ Links ]

38. Sarmiento-Franco L, McNab JM, Pearson RA, Belmar-Casso R. Performance of Broilers Fed on Diets Containing Different Amounts of Chaya (Cnidoscolus aconitifolius) Leaf Meal. Trop Anim Health Prod. 2002;34(3):257-69. [ Links ]

39. Oladeinde F, Kinyua A, Laditan AA, Michelin R, Bryant JL, Denaro F, et al. Effect of Cnidoscolus aconitifolius leaf extract on the blood glucose and insulin levels of inbred type 2 diabetic mice. Cell Mol Biol (Noisyle-grand). 2007;53(3):34-41. [ Links ]

40. Adaramoye OA, Aluko A. Methanolic extract of Cnidoscolus aconitifolius attenuates renal dysfunction induced by chronic ethanol administration in Wistar rats. Alcohol Alcohol. 2011;46(1):4-9. [ Links ]

41. Achi NK, Ohaeri OC, Ijeh II, Eleazu C. Modulation of the lipid profile and insulin levels of streptozotocin induced diabetic rats by ethanol extract of Cnidoscolus aconitifolius leaves and some fractions: Effect on the oral glucose tolerance of normoglycemic rats. Biomed Pharmacother. 2017;86:562-9. [ Links ]

42. Loarca-Piña G, Mendoza S, Ramos-Gómez M, Reynoso R. Antioxidant, Antimutagenic, and Antidiabetic Activities of Edible Leaves from Cnidoscolus chayamansa Mc. Vaugh. J Food Sci. 2010;75(2):68-72. [ Links ]

43. Johnson CE, Oladeinde FO, Kinyua AM, Michelin R, Makinde JM, Jaiyesimi AA, et al. Comparative assessment of total phenolic content in selected medicinal plants. Niger J Nat Prod Med. 2008;12:40-2. [ Links ]

44. Aguilar-Luna JM, Macario-Mendoza PA, Huerta-Lwanga E, Hernández-Daumás S, de Alba-Becerra R, García-Villanueva E. Crecimiento y productividad de chaya (Cnidoscolus chayamansa mcvaugh, euphorbiaceae) con densidad de plantación variable. Cultrop. 2011 [citado 2020 Jul 9];32(1):42-8. Available from: Available from: . [ Links ]

45. Ross-Ibarra J, Molina-Cruz A. The ethnobotany of chaya (Cnidoscolus aconitifolius ssp. aconitifolius breckon)” a nutritious maya vegetable. Econ Bot. 2002;56(4):350-65. [ Links ]

46. Parra-Tabla V, Rico-Gray V, Carbajal M. Effect of defoliation on leaf growth, sexual expression and reproductive success of Cnidoscolus aconitifolius (Euphorbiaceae). Plant Ecology. 2004;173(2):153-60. [ Links ]

47. Adeniran OI, Olajide OO, Igwemmar NC, Orishadipe AT. Phytochemical constituents, antimicrobial and antioxidant potentials of tree spinach [Cnidoscolus aconitifolius (Miller) I. M. Johnston]. J Med Plant Res. 2013;7(19):1310-6. [ Links ]

48. García DE, Medina MG, Domínguez C, Baldizán A, Humbría J, Cova L. Evaluación química de especies no leguminosas con potencial forrajero en el estado de Trujillo, Venezuela. Zootecnia Trop. 2006;24(4):401-15. [ Links ]

49. Kuti JO, konuru HB. Antioxidant Capacity and Phenolic Content in Leaf Extracts of Tree Spinach (Cnidoscolus spp.). J Agric Food Chem. 2004;52(1):117-21. [ Links ]

50. Jaramillo-Jaramillo C, Jaramillo-Espinoza A, D’Armas H, Troccoli L, Rojas-de Astudillo L. Concentraciones de alcaloides, glucósidos cianogénicos, polifenoles y saponinas en plantas medicinales seleccionadas en Ecuador y su relación con la toxicidad aguda contra Artemia salina. Rev Biol Trop. 2016;64(3):1171-84. [ Links ]

51. Poot-López GR, Gasca-Leyva E, Olvera-Novoa MA. Producción de tilapia nilótica (Oreochromis niloticus L.) utilizando hojas de chaya (Cnidoscolus chayamansa McVaugh) como sustituto parcial del alimento balanceado. Lat. Am. J. Aquat. Res. 2012;40(4):835-46. [ Links ]

52. Donkoh A, Atuahene CC, Poku-Prempeh YB, Twum IG. The nutritive value of chaya leaf meal (Cnidoscolus aconitifolius (Mill.) Johnston): studies with broiler chickens. Anim Feed Sci Technol. 1999;77(1/2):163-72. [ Links ]

Bautista-Robles V, Guerrero-Reyes G, Sánchez-Torres GI, Parada-Luna FJ, Barrios-Gutiérrez JJ, Vázquez-Cerero D, et al.Cnidoscolus aconitifolius: therapeutic use and phytochemical properties. Literature review. Rev. Fac. Med. 2020;68(3):446-52. English. doi:

Bautista-Robles V, Guerrero-Reyes G, Sánchez-Torres GI, Parada-Luna FJ, Barrios-Gutiérrez JJ, Vázquez-Cerero D, et al.[Cnidoscolus aconitifolius: usos terapéuticos y propiedades fitoquímicas. Revisión de la literatura]. Rev. Fac. Med. 2020;68(3):446-52. English. doi:

Conflicts of interest None stated by the authors.

Funding None stated by the authors.

Received: October 20, 2018; Accepted: March 21, 2019

*Corresponding autor: Hady Keita. Maestría en Salud Pública, División de Estudios de Postgrado, Universidad de la Sierra Sur. Guillermo Rojas Mijangos S/N Esquina Avenida Universidad, Col. Ciudad Universitaria, División de Estudios de Postgrado, oficina de la Maestría en Salud Pública. Telephone number: +52 1 5513658712. Miahuatlán de Porfirio Díaz, Oaxaca. México. Email:

Creative Commons License This is an open-access article distributed under the terms of the Creative Commons Attribution License