SciELO - Scientific Electronic Library Online

 
vol.30 número1Interval Estimation for the Poisson Distribution Parameter with a Single ObservationSurvival Analysis Applied to Commercial Bank in Venezuela between 1996 and 2004 índice de autoresíndice de assuntospesquisa de artigos
Home Pagelista alfabética de periódicos  

Serviços Personalizados

Journal

Artigo

Indicadores

Links relacionados

  • Em processo de indexaçãoCitado por Google
  • Não possue artigos similaresSimilares em SciELO
  • Em processo de indexaçãoSimilares em Google

Compartilhar


Revista Colombiana de Estadística

versão impressa ISSN 0120-1751

Rev.Colomb.Estad. v.30 n.1 Bogotá jan./jun. 2007

 

Detección de raíces unitarias y cointegración mediante métodos de subespacios

Subspace-Based Methods to Determine Unit Roots and Cointegrating Ranks

ALFREDO GARCÍA-HIERNAUX1, JOSÉ CASALS2, MIGUEL JEREZ3

1Departamento de Estadística, Universidad Carlos III de Madrid, España. Profesor ayudante doctor. E-mail: aghierna@est-econ.uc3m.es
2Departamento de Economía Cuantitativa, Universidad Complutense de Madrid, España. Profesor asociado. E-mail: jcasalsc@cajamadrid.es
3Departamento de Economía Cuantitativa, Universidad Complutense de Madrid, España. Profesor titular. E-mail: mjerez@ccee.ucm.es


Resumen

Proponemos un nuevo procedimiento para detectar raíces unitarias basado en métodos de subespacios. Su planteamiento comporta tres aspectos fundamentales. Primero, la misma metodología se puede aplicar a series individuales o a vectores de series temporales. Segundo, utiliza una familia flexible de criterios de información, cuyas funciones de pérdida se pueden adaptar a las propiedades estadísticas de los datos. Finalmente, no requiere especificar un proceso estocástico para las series analizadas. Se demuestra la consistencia del método y los ejercicios de simulación revelan buenas propiedades en muestras finitas. Además, su aplicación práctica se ilustra mediante el análisis de varias series reales.

Palabras clave: modelos estado espacio, análisis de series temporales, criterios de información, función de pérdida.


Abstract

We propose a new procedure to detect unit roots based on subspace methods. It has three main original aspects. First, the same method can be applied to single or multiple time series. Second, it uses a flexible family of information criteria, which loss functions can be adapted to the statistical properties of the data. Last, it does not require the specification of a stochastic process for the series analyzed. This procedure is consistent and a simulation exercise shows that it has good finite sample properties. Its application is illustrated with the analysis of several real time series.

Key words: State space models, Time series analysis, Information criteria, Loss function.


Texto completo disponible en PDF


Referencias

1. Abuaf, N. & Jorion, P. (1990), ‘Purchasing Power Parity in the Long Run’, The Journal of Finance 45, 157–174.        [ Links ]

2. Akaike, H. (1976), Canonical Correlation Analysis of Time Series and the Use of an Information Criterion, Academic Press.        [ Links ]

3. Aoki, M. (1990), State Space Modelling of Time Series, Springer Verlag, New York.        [ Links ]

4. Bauer, D. (1998), Some Asymptotic Theory for the Estimation of Linear Systems Using Maximum Likelihood Methods or Subspace Algorithms, Ph. D. Tesis,TU Wien.        [ Links ]

5. Bauer, D. & Ljung, L. (2002), ‘Some Facts About the Choice of the Weighting Matrices in Larimore Type of Subspace Algorithms’, Automatica 38, 763–773.        [ Links ]

6. Bauer, D. & Wagner, M. (2002), ‘Estimating Cointegrated Systems Using Subspace Algorithms’, Journal of Econometrics 111, 47–84.        [ Links ]

7. Bengtsson, T. & Cavanaugh, J. (2006), ‘An Improved Akaike Information Criterion for State-Space Model Selection’, Computational Statistics and Data Analysis 50(10), 2635–2654.        [ Links ]

8. Casals, J. (1997), Métodos de subespacios en econometría, Tesis doctoral, Universidad Complutense de Madrid.        [ Links ]

9. Casals, J., Sotoca, S. & Jerez, M. (1999), ‘A Fast Stable Method to Compute the Likelihood of Time Invariant State Space Models’, Economics Letters 65(3), 329–337.        [ Links ]

10. Chui, N. L. C. (1997), Subspace Methods and Informative Experiments for System Identification, Ph. D. Tesis, Pembroke College Cambridge.        [ Links ]

11. Dickey, D. A. & Fuller, W. A. (1979), ‘Distribution of the Estimators for Autoregressive Time Series with Unit Root’, Journal of the American Statistical Association 74, 427–431.        [ Links ]

12. Eckart, C. & Young, G. (1936), ‘The Approximation of One Matrix by Another of Lower Rank’, Psychometrika 1, 211–218.        [ Links ]

13. Favoreel, W., De Moor, B. & Van Overschee, P. (2000), ‘Subspace State Space System Identification for Industrial Processes’, Journal of Process Control 10, 149–155.        [ Links ]

14. Flôres, R. G., Jorion, P., Preumont, P. Y. & Szafarz, A. (1999), ‘Multivariate Unit Roots Test of PPP Hypothesis’, Journal of Empirical Finance 6, 335–353.        [ Links ]

15. García-Hiernaux, A. (2005), Identificación de modelos para series temporales mediante métodos de subespacios, Tesis doctoral, Universidad Complutense de Madrid.        [ Links ]

16. Grubb, H. (1992), ‘A Multivariate Time Series Analysis of Some Flour Price Data’, Applied Statistics 41, 95–107.        [ Links ]

17. Ho, B. & Kalman, R. (1966), ‘Effective Construction of Linear State-Variable Models from Input-Output Functions’, Regelungstechnik 14, 545–548.        [ Links ]

18. Hurvich, C., Shumway, R. & Tsai, C. (1990), ‘Improved Estimators of Kullback-Leibler in Information for Autoregressive Model Selection in Small Samples’, Biometrika 77, 709–719.        [ Links ]

19. Johansen, S. (1991), ‘Estimation and Hypothesis Testing of Cointegration Vectors in Gaussian Vector Autoregressive Models’, Econometrica 59, 1551–1580.        [ Links ]

20. Larimore, W. E. (1983), System Identification, Reduced-Order Filtering and Modeling Via Canonical Variate Analysis, in ‘Proceedings of the American Control Conference, ACC’, San Francisco, pp. 445–451.        [ Links ]

21. Larimore, W. E. (1990), Canonical Variate Analysis in Identification, Filtering and Adaptive Control, in ‘Proceedings of the 29th Conference on Decision and Control,’, Hawaii, pp. 596–604.        [ Links ]

22. Lütkepohl, H. & Poskitt, D. S. (1996), ‘Specification of Echelon Form VARMA Models’, Journal of Business and Economic Statistics 14(1), 69–79.        [ Links ]

23. Martín Manjón, R. & Treadway, A. (1997), ‘The Fed Controls Only One of the Two Interest Rates in the U.S. Economy’, Documento de Trabajo del ICAE (9716).        [ Links ]

24. Phillips, P. B. C. & Durlauf, N. S. (1986), ‘Multiple Time Series Regression with Integrated Process’, Review of Economic Studies 53, 473–495.        [ Links ]

25. Poskitt, D. S. (2000), ‘Strongly Consistent Determination of Cointegrating Rank Via Canonical Correlations’, Journal of Business and Economic Statistics 18, 77–90.        [ Links ]

26. Terceiro, J. (1990), Estimation of Dynamics Econometric Models with Errors in Variables, Springer-Verlag, Berlin.        [ Links ]

27. Tiao, G. C. & Tsay, R. S. (1989), ‘Model Specification in Multivariate Time Series’, Journal of the Royal Statistical Society, B Series 51(2), 157–213.        [ Links ]

28. Van Overschee, P. & De Moor, B. (1994), ‘N4SID: Subspace Algorithms for the Identification of Combined Deterministic-Stochastic Systems’, Automatica 30(1), 75–93.        [ Links ]

29. Viberg, M. (1995), ‘Subspace-Based Methods for the Identification of the Linear Time-Invariant Systems’, Automatica 31(12), 1835–1852.        [ Links ]

Creative Commons License Todo o conteúdo deste periódico, exceto onde está identificado, está licenciado sob uma Licença Creative Commons