SciELO - Scientific Electronic Library Online

 
vol.40 issue1Estimation of Sensitive Attributes Using a Stratified Kuk Randomization Device author indexsubject indexarticles search
Home Pagealphabetic serial listing  

Services on Demand

Journal

Article

Indicators

Related links

  • On index processCited by Google
  • Have no similar articlesSimilars in SciELO
  • On index processSimilars in Google

Share


Revista Colombiana de Estadística

Print version ISSN 0120-1751

Rev.Colomb.Estad. vol.40 no.1 Bogotá Jan./June 2017

https://doi.org/10.15446/rce.v40n1.50085 

http://dx.doi.org/10.15446/rce.v40n1.50085

Transmuted Singh-Maddala Distribution: A new Flexible and Upside-Down Bathtub Shaped Hazard Function Distribution

Distribución Singh-Maddala transmutada: una nueva distribución, flexible y con forma de bañera invertida para la función de riesgo

MIRZA NAVEED SHAHZAD1, FATON MEROVCI2, ZAHID ASGHAR3

1University of Gujrat, Department of Statistics, Gujrat, Pakistan. PhD. Email: nvd.shzd@uog.edu.pk
2University of Prishtina ''Hasan Prishtina'', Pristina, Republic of Kosovo. PhD. Email: fmerovci@yahoo.com
3Quaid-i-Azam University, Department of Statistics, Islamabad, Pakistan. PhD. Email: g.zahid@gmail.com


Abstract

The Singh-Maddala distribution is very popular to analyze the data on income, expenditure, actuarial, environmental, and reliability related studies. To enhance its scope and application, we propose four parameters transmuted Singh-Maddala distribution, in this study. The proposed distribution is relatively more flexible than the parent distribution to model a variety of data sets. Its basic statistical properties, reliability function, and behaviors of the hazard function are derived. The hazard function showed the decreasing and an upside-down bathtub shape that is required in various survival analysis. The order statistics and generalized TL-moments with their special cases such as L-, TL-, LL-, and LH-moments are also explored. Furthermore, the maximum likelihood estimation is used to estimate the unknown parameters of the transmuted Singh-Maddala distribution. The real data sets are considered to illustrate the utility and potential of the proposed model. The results indicate that the transmuted Singh-Maddala distribution models the datasets better than its parent distribution.

Key words: Moments, Parameter Estimation, Transmuted Singh-Maddala Distribution, TL-Moments, Upsidedown Bathtub Shaped Hazard Rate.


Resumen

La distribución Singh-Maddala es muy popular para analizar datos de ingresos, gastos, actuariales, ambientales y de confiabilidad. Para mejorar su alcance y aplicación se propone su extensión a la distribución de cuatro parámetros Singh-Maddala transmutada. Esta es más flexible en la modelación de diversos conjuntos de datos. Sus propiedades básicas, las funciones de confiabilidad y riesgos son estudiadas. La función de riesgo es decrecientes o tiene forma de bañera invertida. Como se requiere en varios estudios de sobrevivencia se exploran sus estadísticas de orden y los momentos TL, con sus casos especiales L, TL, LL y LH. Se emplea máxima verosimilitud para la estimación de los cuatro parámetros. Datos reales son usados para ilustrar la utilidad y potencialidad del modelo propuesto. Los resultados indican que la distribución propuesta ajusta mejor que la original.

Palabras clave: distribución Singh-Maddala transmuetada, función de riesgo invertida, momentos, momentos TL, estimación de parámetros.


Texto completo disponible en PDF


References

1. Ahmad, A., Ahmad, S. P. & Ahmed, A. (2014), 'Transmuted Inverse Rayleigh Distribution: A Generalization of the Inverse Rayleigh Distribution', Mathematical Theory and Modeling 4(6), 177-185.         [ Links ]

2. Arnold, B. C., Balakrishnan, N. & Nagaraja, H. N. (1992), A First Course in Order Statistics, Vol. 54, Siam.         [ Links ]

3. Aryal, G. R. (2013), 'Transmuted log-logistic distribution', Journal of Statistics Applications and Probability 2(1), 11-20.         [ Links ]

4. Aryal, G. R. & Tsokos, C. P. (2011), 'Transmuted Weibull distribution: A generalization of the Weibull probability distribution', European Journal of Pure and Applied Mathematics 4(2), 89-102.         [ Links ]

5. Balakrishnan, N. & Cohen, A. C. (1991), Order statistics & inference: estimation methods, Academic Press.         [ Links ]

6. Bayazit, M. & Onoz, B. (2002), 'LL-moments for estimating low fow quantiles', Hydrological Sciences Journal 47(5), 707-720.         [ Links ]

7. Brzezinski, M. (2014), 'Empirical modeling of the impact factor distribution', Journal of Informetrics 8(2), 362-368.         [ Links ]

8. Elamir, E. A. & Seheult, A. H. (2003), 'Trimmed L-moments', Computational Statistics and Data Analysis 43(3), 299-314.         [ Links ]

9. Elbatal, I. (2013), 'Transmuted generalized inverted exponential distribution', Economic Quality Control 28(2), 125-133.         [ Links ]

10. Hosking, J. R. M. (1990), 'L-moments: analysis and estimation of distributions using linear combinations of order statistics', Journal of the Royal Statistical Society. Series B 52, 105-124.         [ Links ]

11. Khan, M. S. & King, R. (2014), 'A new class of transmuted inverse Weibull Distribution for reliability analysis', American Journal of Mathematical and Management Sciences 33(4), 261-286.         [ Links ]

12. Kleiber, C. & Kotz, S. (2003), Statistical Size Distributions in Economics and Actuarial Sciences, Vol. 470, John Wiley & Sons.         [ Links ]

13. Lee, E. & Wang, J. (2003), Statistical Methods for Survival Data Analysis, Wiley, New York.         [ Links ]

14. Merovci, F. (2013), 'Transmuted Rayleigh distribution', Austrian Journal of Statistics 42(1), 21-31.         [ Links ]

15. Sakulski, D., Jordaan, A., Tin, L. & Greyling, C. (2014), Fitting theoretical distributions to Rainy Days for Eastern Cape Drought Risk assessment, 'Proceedings of DailyMeteo. org/2014 Conference', p. 48.         [ Links ]

16. Shahzad, M. N. & Asghar, Z. (2016), 'Transmuted Dagum Distribution: A more flexible and broad shaped hazard function model', Hacettepe Journal of Mathematics and Statistics 45(1), 1-18.         [ Links ]

17. Shao, Q., Wang, Q. & Zhang, L. (2013), A stochastic weather generation method for temporal precipitation simulation, '20th international congress on modelling and simulation', Society of Australia and New Zealand, , , p. 2681-2687.         [ Links ]

18. Sharma, V. K., Singh, S. K. & Singh, U. (2014), 'A new upside-down bathtub shaped hazard rate model for survival data analysis', Applied Mathematics and Computation 239, 242-253.         [ Links ]

19. Shaw, W. T. & Buckley, I. R. (2009), 'A stochastic weather generation method for temporal precipitation simulation: The alchemy of probability distributions: beyond Gram-Charlier expansions, and a skew-kurtotic-normal distribution from a rank transmutation map', arXiv preprint arXiv:0901.0434, 1-8.         [ Links ]

20. Singh, S. K. & Maddala, G. (1976), 'A function for the size distribution and incomes', Econometrica 44, 963-970.         [ Links ]

21. Wang, Q. J. (1997), 'LH moments for statistical analysis of extreme events', Water Resources Research 33(12), 2841-2848.         [ Links ]

22. Zimmer, W. J., Keats, J. B. & Wang, F. K. (1998), 'The Burr XII distribution in reliability analysis', Journal of Quality Technology 30(4), 386-394.         [ Links ]


[Recibido en abril de 2015. Aceptado en febrero de 2016]

Este artículo se puede citar en LaTeX utilizando la siguiente referencia bibliográfica de BibTeX:

@ARTICLE{RCEv40n1a01,
    AUTHOR  = {Naveed Shahzad, Mirza and Merovci, Faton and Asghar, Zahid},
    TITLE   = {{Transmuted Singh-Maddala Distribution: A new Flexible and Upside-Down Bathtub Shaped Hazard Function Distribution}},
    JOURNAL = {Revista Colombiana de Estadística},
    YEAR    = {2017},
    volume  = {40},
    number  = {1},
    pages   = {1-27}
}