SciELO - Scientific Electronic Library Online

 
vol.42 número2Una nueva mixtura de la distribución normal sesgada, con aplicacionesUn diseño aleatorio censurado adaptativo en dos etapas con aplicación índice de autoresíndice de materiabúsqueda de artículos
Home Pagelista alfabética de revistas  

Servicios Personalizados

Articulo

Indicadores

Links relacionados

  • En proceso de indezaciónCitado por Google
  • No hay articulos similaresSimilares en SciELO
  • En proceso de indezaciónSimilares en Google

Compartir


Revista Colombiana de Estadística

versión impresa ISSN 0120-1751

Rev.Colomb.Estad. vol.42 no.2 Bogotá jul./dic. 2019

http://dx.doi.org/10.15446/rce.v42n2.70815 

Artículos originales de investigación

Simultaneously Testing for Location and Scale Parameters of Two Multivariate Distributions

Prueba simultánea de ubicación y parámetros de escala de dos distribuciones multivariables

Atul Chavana  , Digambar Shirkeb 

aDepartment of Statistics, Shivaji University, Kolhapur, India. E-mail: chavanatul2190@gmail.com

bDepartment of Statistics, Shivaji University, Kolhapur, India. E-mail: dtshirke@gmail.com

Abstract

In this article, we propose nonparametric tests for simultaneously testing equality of location and scale parameters of two multivariate distributions by using nonparametric combination theory. our approach is to combine the data depth based location and scale tests using combining function to construct a new data depth based test for testing both location and scale parameters. Based on this approach, we have proposed several tests. Fisher’s permutation principle is used to obtain p-values of the proposed tests. Performance of proposed tests have been evaluated in terms of empirical power for symmetric and skewed multivariate distributions and compared to the existing test based on data depth. The proposed tests are also applied to a real-life data set for illustrative purpose.

Key words: Combining function; Data depth; Permutation test; Two-sample test

Resumen

En este artículo, proponemos pruebas no paramétricas para probar simultáneamente la igualdad de ubicación y los parámetros de escala de dos distribuciones multivariantes mediante la teoría de combinaciones no paramétricas. Nuestro enfoque es combinar las pruebas de escala y ubicación basadas en la profundidad de los datos utilizando la función de combinación para construir una nueva prueba basada en la profundidad de los datos para probar los parámetros de ubicación y escala. Con base en este enfoque, hemos propuesto varias pruebas. El principio de permutación de Fisher se usa para obtener valores p de las pruebas propuestas. El rendimiento de las pruebas propuestas se ha evaluado en términos de potencia empírica para distribuciones multivariadas simétricas y asimétricas y se comparó con la prueba existente basada en la profundidad de los datos. Las pruebas propuestas también se aplican a un conjunto de datos de la vida real con fines ilustrativos.

Palabras-clave: Función de combinación; Profundidad de datos; Prueba de permutación; Prueba de dos muestras

Full text available only in PDF format.

References

Baumgartner, W., Weiß, P. & Schindler, H. (1998), ‘A nonparametric test for the general two-sample problem’, Biometrics pp. 1129-1135. [ Links ]

Chavan, A. R. & Shirke, D. T. (2016), ‘Nonparametric tests for testing equality of location parameters of two multivariate distributions’, Electronic Journal of Applied Statistical Analysis 9(2), 417-432. [ Links ]

Chenouri, S. & Small, C. G. (2012), ‘A nonparametric multivariate multisample test based on data depth’, Electronic Journal of Statistics 6, 760-782. [ Links ]

Cucconi, O. (1968), ‘Un nuovo test non parametrico per il confronto tra due gruppi campionari’, Giornale degli Economisti e Annali di Economia pp. 225-248. [ Links ]

Donoho, D. L. & Gasko, M. (1992), ‘Breakdown properties of location estimates based on halfspace depth and projected outlyingness’, The Annals of Statistics pp. 1803-1827. [ Links ]

Dovoedo, Y. H. & Chakraborti, S. (2015), ‘Power of depth-based nonparametric tests for multivariate locations’, Journal of Statistical Computation and Simulation 85(10), 1987-2006. [ Links ]

Fisher, R. A. (1925), Statistical methods for research workers, Genesis Publishing Pvt Ltd. [ Links ]

Jolicoeur, P. & Mosimann, J. E. (1960), ‘Size and shape variation in the painted turtle. a principal component analysis’, Growth 24(4), 339-354. [ Links ]

Lepage, Y. (1971), ‘A combination of wilcoxon’s and ansari-bradley’s statistics’, Biometrika 58(1), 213-217. [ Links ]

Li, J., Ban, J. & Santiago, L. S. (2011), ‘Nonparametric tests for homogeneity of species assemblages: a data depth approach’, Biometrics 67(4), 1481-1488. [ Links ]

Li, J. & Liu, R. Y. (2004), ‘New nonparametric tests of multivariate locations and scales using data depth’, Statistical Science pp. 686-696. [ Links ]

Li, J. & Liu, R. Y. (2016), New nonparametric tests for comparing multivariate scales using data depth, in ‘Robust Rank-Based and Nonparametric Methods’, Springer, pp. 209-226. [ Links ]

Liptak, T. (1958), ‘On the combination of independent tests’, Magyar Tud Akad Mat Kutato Int Kozl 3, 171-197. [ Links ]

Liu, R. Y. (1990), ‘On a notion of data depth based on random simplices’, The Annals of Statistics 18(1), 405-414. [ Links ]

Liu, R. Y., Parelius, J. M. & Singh, K. (1999), ‘Multivariate analysis by data depth: descriptive statistics, graphics and inference, (with discussion and a rejoinder by liu and singh)’, The annals of statistics 27(3), 783-858. [ Links ]

Liu, R. Y. & Singh, K. (1993), ‘A quality index based on data depth and multivariate rank tests’, Journal of the American Statistical Association 88(421), 252-260. [ Links ]

Mahalanobis, P. (1936), Mahalanobis distance, in ‘Proceedings National Institute of Science of India’, Vol. 49, pp. 234-256. [ Links ]

Murakami, H. (2007), ‘Lepage type statistic based on the modified Baumgartner statistic’, Computational statistics & data analysis 51(10), 5061-5067. [ Links ]

Neuhäuser, M. (2000), ‘An exact two-sample test based on the baumgartner-weiß-schindler statistic and a modification of lepage’s test’, Communications in Statistics-Theory and Methods 29(1), 67-78. [ Links ]

Park, H.-I. (2015), ‘Nonparametric simultaneous test procedures’, Revista Colombiana de Estadística 38(1), 107-121. [ Links ]

Pesarin, F. (2001), Multivariate permutation tests: with applications in biostatistics, Vol. 240, Wiley Chichester. [ Links ]

Podgor, M. J. & Gastwirth, J. L. (1994), ‘On non-parametric and generalized tests for the two-sample problem with location and scale change alternatives’, Statistics in Medicine 13(5-7), 747-758. [ Links ]

Rousson, V. (2002), ‘On distribution-free tests for the multivariate two-sample location-scale model’, Journal of multivariate analysis 80(1), 43-57. [ Links ]

Singh, K. (1991), A notion of majority depth. Unpublished document. [ Links ]

Tippett, L. H. C. (1952), The Methods of Statistics. 4th Rev, Williams and Norgate Ltd.; London. [ Links ]

Tukey, J. W. (1975), Mathematics and the picturing of data, in ‘Proceedings of the international congress of mathematicians’, Vol. 2, pp. 523-531. [ Links ]

Zuo, Y. & Serfling, R. (2000), ‘General notions of statistical depth function’, Annals of statistics pp. 461-482. [ Links ]

Creative Commons License This is an open-access article distributed under the terms of the Creative Commons Attribution License