SciELO - Scientific Electronic Library Online

 
vol.44 issue1A Review of Latent Space Models for Social Networks author indexsubject indexarticles search
Home Pagealphabetic serial listing  

Services on Demand

Journal

Article

Indicators

Related links

  • On index processCited by Google
  • Have no similar articlesSimilars in SciELO
  • On index processSimilars in Google

Share


Revista Colombiana de Estadística

Print version ISSN 0120-1751

Rev.Colomb.Estad. vol.44 no.1 Bogotá Jan./June 2021  Epub Feb 27, 2021

https://doi.org/10.15446/rce.v44n1.86519 

Original articles of research

Stress-Strength Reliability Estimation of Time-Dependent Models with Fixed Stress and Phase Type Strength Distribution

Estimación de la confiabilidad de resistencia a la tensión de modelos dependientes del tiempo con estrés fijo y distribución de fuerza de tipo de fas

Joby K. Jose1  a 

Mottammal Drisya1  b 

1Department of Statistical Sciences, Kannur University, Kerala, India


Abstract

The time-dependent stress-strength reliability models deal with systems whose strength or the stress imposed on it or both are time-dependent. In this paper, we consider time-dependent stress-strength reliability model which is subjected to constant stress and it causes a change in the strength of the system over each run of the system. Assuming a continuous phase-type distribution for the initial strength and exponential distribution for the duration of each run of the system called cycle time we derived the expression for the stress-strength reliability of the system at time t. The model is further extended to the cases where cycle time distribution is Gamma and Weibull. Simulation studies are conducted to assess the variations in stress-strength reliability, R(t) at different time points, corresponding to the changes in the initial strength distribution and cycle time distribution.

Key words: EM algorithm; Exponential distribution; Gamma distribution; Phase type distribution; Stress-Strength reliability; Weibull distribution

Resumen

Los modelos de confiabilidad tensión-resistencia dependientes del tiempo tratan con sistemas cuya fuerza o el estrés que se le impone o ambos dependen de tiempo. En este artículo, consideramos modelos de confiabilidad de resistencia-tensión dependientes del tiempo que está sometido a un estrés constante y provoca un cambio en la fuerza del sistema después de cada ejecución del sistema. Asumiendo una fase continua distribución de tipo para la fuerza inicial y distribución exponencial para la duración de cada ejecución del sistema llamado tiempo de ciclo que obtuvimos la expresión de la fiabilidad tensión-resistencia del sistema en el tiempo t. El modelo se amplía aún más a los casos en los que la distribución del tiempo de ciclo es Gamma y Weibull. Se realizan estudios de simulación para evaluar las variaciones en la confiabilidad tensión-resistencia, R(t) en diferentes puntos de tiempo, correspondiente a los cambios en la distribución y el ciclo de la fuerza inicial distribución del tiempo.

Palabras clave: Algoritmo EM; Distribución de tipo de fase; Distribución Gamma; Distribución exponencial; Distribución de Weibull; Fiabilidad de resistencia al estrés

Full text available only in PDF format

References

Asmussen, S., Nerman, O. & Olsson, M. (1996), 'Fitting phase-type distributions via the em algorithm', Scandinavian Journal of Statistics 23, 419-441. [ Links ]

Baklizi, A. (2008), 'Estimation of pr(x < y) using record values in the one and two parameter exponential distributions', Communications in Statistics-Theory and Methods 37, 692-698. [ Links ]

Barron, Y., Frostig, E. & Levikson, B. (2004), 'Analysis of r-out-of-n repairable systems: The case of phase-type distribution', Advances in Applied Probability 36, 692-698. [ Links ]

Barron, Y. & Yechiali, U. (2017), 'Generalized control-limit preventive repair policies for deteriorating cold and warm standby markovian systems', IISE Transactions 49, 1031-1049. [ Links ]

Birnbaum, Z. M. (1956), 'On a use of the mann-whitney statistic', Proceedings of the Third Berkeley Symposium on Mathematical Statistics and Probability 1, 13-17. [ Links ]

Bladt, M., Esparza, L. J. R. & Nielsen, B. F. (2011), 'Fisher information and statistical inference for phase-type distributions', Journal ofApplied Probability 48(A), 277-293. [ Links ]

Eryilmaz, S. (2018), 'Phase type stress-strength models with reliability applications', Communications in Statistics-Simulation and Computation 47(4), 954-963. [ Links ]

Ghitany, M. E., Al-Mutairi, D. K. & Aboukhamseen, S. M. (2015), 'Estimation of the reliability of a stress-strength system from power lindley distributions', Communications in Statistics-Simulation and Computation 44, 118-136. [ Links ]

Gopalan, M. N. & Venkateswarlu, P. (1982), 'Reliability analysis of time-dependent cascade system with deterministic cycle times', MicroelectronicsReliability 22, 841-872. [ Links ]

Gopalan, M. N. & Venkateswarlu, P. (1983), 'Reliability analysis of time-dependent cascade system with random cycle times', Microelectronics Reliability 23(2), 355-366. [ Links ]

Huang, K., Mi, J. & Wang, Z. (2012), 'Inference about reliability parameter with gamma strength and stress', Journal of Statistical Planning and Inference 142(4), 848-854. [ Links ]

Jose, J. K., Drisya, M. & Manoharan, M. (2020), 'Estimation of stress-strength reliability using discrete phase type distribution', Communications in Statistics- Theory and Methods 17(2), 141-154. [ Links ]

Jose, J. K., Xavier, T. & Drisya, M. (2019), 'Estimation of stress strength reliability using Kumaraswamy half-logistic distribution', Journal ofProbability and Statistical Science 17(2), 141-154. [ Links ]

Kizilaslan, F. & Nadar, M. (2015), 'Classical and bayesian estimation of reliability in multi-component stress-strength model based on Weibull distribution', Revista Colombiana de Estadística 38(2), 467-484. [ Links ]

Kotz, S. & Pensky, M. (2003), The stress-strength model and its generalizations: theory and applications, World Scientific. [ Links ]

Kundu, D. & Raqab, M. Z. (2009), 'Estimation of r = pr(y < x) for three-parameter Weibull distribution', Statistics and Probability Letters 79, 1839-1846. [ Links ]

Lomnicki, Z. A. (1966), 'A note on the Weibull renewal process', Biometrica 53, 375-381. [ Links ]

Neuts, M. F. (1975), Probability distributions of phase-type, in E. H. Florin, ed., 'Liber Amicorum', University of Louvain, Belgium, pp. 173-206. [ Links ]

Rao, G. S. (2012), 'Estimation of reliability in multicomponent stress-strength based on generalized exponential distribution', Revista Colombiana de Estadística 35, 67-76. [ Links ]

Rao, G. S., Aslam, M. & Kundu, D. (2014), 'Burr type XII distribution parametric estimation and estimation of reliability in multi-component stress strength model', Communication in Statistics-Theory and Methods 44(23), 4953-4961. [ Links ]

Rezaei, S., Tahmasbi, R. & Mahmoodi, M. (2010), 'Estimation of p(y < x) for generalized Pareto distribution', Journal of Statistical Planning and Inference 140, 480-494. [ Links ]

Siju, K. C. & Kumar, M. (2016), 'Reliability analysis of time dependent stress-strength model with random cycle times', Perspectives in Science 8, 654-657. [ Links ]

Siju, K. C. & Kumar, M. (2017), 'Reliability computation of a dynamic stress-strength model with random cycle times', International Journal of Pure and Applied Mathematics 117, 309-316. [ Links ]

Wong, A. (2012), 'Interval estimation of P(Y < X) for generalized Pareto distribution', Journal of Statistical Planning and Inference 142, 601-607. [ Links ]

Xavier, T. & Jose, J. K. (2020), 'A study of stress-strength reliability using a generalization of power transformed half-logistic distribution', Communications in Statistics - Theory and Methods. 10.1080/03610926.2020.1716250 [ Links ]

Yadav, R. P. S. (1973), 'A reliability model for stress strength problem', Microelectronics Reliability 12(2), 119-123. [ Links ]

a Ph.D. E-mail: jobydsskannur@rediffmail.com

b M.Sc. E-mail: drisyam.m@gmail.com

Creative Commons License This is an open-access article distributed under the terms of the Creative Commons Attribution License