SciELO - Scientific Electronic Library Online

 
vol.45 issue1Wavelet Shrinkage Generalized Bayes Estimation for Multivariate Normal Distribution Mean Vectors with unknown Covariance Matrix under Balanced-LINEX LossSome Characterizations of the Exponential Distribution by Generalized Order Statistics, with Applications to Statistical Prediction Problem author indexsubject indexarticles search
Home Pagealphabetic serial listing  

Services on Demand

Journal

Article

Indicators

Related links

  • On index processCited by Google
  • Have no similar articlesSimilars in SciELO
  • On index processSimilars in Google

Share


Revista Colombiana de Estadística

Print version ISSN 0120-1751

Rev.Colomb.Estad. vol.45 no.1 Bogotá Jan./June 2022  Epub Jan 17, 2023

https://doi.org/10.15446/rce.v45n1.93196 

Artículos originales de investigación

Finite Population Mixed Models for Pretest-Posttest Designs with Response Errors

Modelos mixtos para estudios pretest-posttest en poblaciones finitas con error en la respuesta

LUZ MERY GONZÁLEZ1  a 

JULIO M. SINGER2  b 

EDWARD J. STANEK III3  c 

1 DEPARTAMENTO DE ESTADÍSTICA, FACULTAD DE CIENCIAS, UNIVERSIDAD NACIONAL DE COLOMBIA, BOGOTÁ, COLOMBIA

2 DEPARTAMENTO DE ESTATÍSTICA, INSTITUTO DE MATEMÁTICA E ESTATÍSTICA, UNIVERSIDADE DE SÃO PAULO, SÃO PAULO, BRAZIL

3 DEPARTMENT OF PUBLIC HEALTH, UNIVERSITY OF MASSACHUSETTS, AMHERST, USA


Abstract

We consider a finite population mixed model that accommodates response errors and show how to obtain optimal estimators of the finite population parameters in a pretest-posttest context. We illustrate the method with the estimation of the difference in gain between two interventions and consider a simulation study to compare the empirical version of the proposed estimator (obtained by replacing variance components with estimates) with the estimator obtained via covariance analysis usually employed in such settings. The results indicate that in many instances, the proposed estimator has a smaller mean squared error than that obtained from the standard analysis of covariance model.

Key words: analysis of covariance; BLUP; optimal estimator; random permutation model

Resumen

Se considera un modelo mixto para población finita que tiene en cuenta el error de respuesta y que arroja estimadores óptimos de los parámetros de la población finita, para analizar datos de estudios con estructura del tipo pretest-posttest. Se ilustra el método estimando la diferencia en ganancia entre dos intervenciones y se considera un estudio de simulación para comparar la versión empírica del estimador propuesto (obtenido al reemplazar las componentes de varianza con sus estimativas) con el estimador obtenido vía análisis de covarianza, que es usualmente empleado en este tipo de estudios. Los resultados indican que en muchas circunstancias, el estimador propuesto tiene menor error cuadrático medio que el obtenido del análisis estándar usando el modelo de covarianza.

Palabras clave: análisis de covarianza; BLUP; estimador óptimo; modelo de permutación aleatoria

Full text available only in PDF format

References

Alencar, A., Singer, J. M. & Rocha, F. (2012), ‘Competing regression models for longitudinal data’, Biometrical Journal 54, 214-229. [ Links ]

Aoki, R., Achcar, J. A., Bolfarine, H. & Singer, J. M. (2003), ‘Bayesian analysis of null intercept errors-in-variables regression for pretest-posttest data’, Journal of Applied Statistics 30, 3-12. [ Links ]

Bonate, P. L. (2000), Analysis of pretest-posttest designs, Chapmann & Hall/CRC, Boca Raton. [ Links ]

Brogan, D. R. & Kutner, M. H. (1980), ‘Comparative analysis of pretest-posttest research designs’, The American Statistician 34, 229-232. [ Links ]

Efron, B. & Tibshirani, R. (1993), An Introduction to the Bootstrap, Chapman & Hall, New York. [ Links ]

Harville, D. A. (1997), Matrix Algebra from a Statistician’s Perspective, Springer, New York. [ Links ]

Knoke, J. (1991), ‘Nonparametric analysis of covariance for comparing change in randomized studies with baseline values subject to error’, Biometrics 47, 523-533. [ Links ]

Laird, N. (1983), ‘Further comparative analyses of pretest-posttest research designs’, The American Statistician 37, 329-330. [ Links ]

Leon, S., Tsiatis, A. & Davidian, M. (2003), ‘Semiparametric estimation of treatment effect in a pretest-posttest study’, Biometrics 59, 1046-1055. [ Links ]

Pfeffermann, D. (2017), ‘Bayes-based non-bayesian inference on finite populations from non-representative samples: A unified approach’, Calcutta Statistical Association Bulletin 69, 35-63. [ Links ]

R Core Team (2021), R: A Language and Environment for Statistical Computing, R Foundation for Statistical Computing, Vienna, Austria. https://www.Rproject.org/Links ]

Rubin, D. (2005), ‘Causal inference using potential outcomes: Design, modeling, decisions’, Journal of the American Statistical Association 100, 322-331. [ Links ]

Singer, J. & Andrade, D. (1997), ‘Regression models for the analysis of pretest/posttest data’, Biometrics 53, 729-735. [ Links ]

Stanek III, E. (1988), ‘Choosing a pretest-posttest analysis’, The American Statistician 42, 178-183. [ Links ]

Stanek III, E. J. & Singer, J. M. (2004), ‘Predicting random effects from finite population clustered samples with response error’, Journal of the American Statistical Association 99, 1119-1130. [ Links ]

Stanek III, E. J., Singer, J. M. & Lencina, V. B. (2004), ‘A unified approach to estimation and predition under simple random sampling’, Journal of Statistical Planning and Inference 121, 325-338. [ Links ]

Yang, L. & Tsiatis, A. (2001), ‘Efficiency study of estimators for a treatment effect in a pretest-posttest trial’, The American Statistician 55, 314-321. [ Links ]

Received: January 2021; Accepted: November 2021

aPh.D. E-mail: lgonzalezg@unal.edu.co

bPh.D. E-mail: jmsinger@ime.usp.br

cPh.D. E-mail: stanek@schoolph.umass.edu

Creative Commons License This is an open-access article distributed under the terms of the Creative Commons Attribution License