SciELO - Scientific Electronic Library Online

 
vol.47 número4Malignant hypercalcemia at a national referral center. A retrospective analysisCerebral amyloid angiopathy in an octogenarian índice de autoresíndice de assuntospesquisa de artigos
Home Pagelista alfabética de periódicos  

Serviços Personalizados

Journal

Artigo

Indicadores

Links relacionados

  • Em processo de indexaçãoCitado por Google
  • Não possue artigos similaresSimilares em SciELO
  • Em processo de indexaçãoSimilares em Google

Compartilhar


Acta Medica Colombiana

versão impressa ISSN 0120-2448

Acta Med Colomb vol.47 no.4 Bogotá jul./dez. 2022  Epub 27-Maio-2023

https://doi.org/10.36104/amc.2022.2466 

Education and practice of medicine

The ontogenetic model for CVA rehabilitation with transcranial stimulation

GABRIEL AUGUSTO CASTILLO-CASTELBLANCOa 

SERGIO FRANCISCO RAMÍREZ-GARCÍAb 

MAURICIO ARCOS-BURGOSc  * 

a Neurología. Clínica Reina Sofía. Hospital Infantil Universitario de San José; Bogotá, D.C. (Colombia).

b Neurología. Clínica Reina Sofía. Hospital Infantil Universitario de San José. Bogotá, D.C. (Colombia).

c Genética. Grupo de Investigación en Psiquiatría GIPSI. Universidad de Antioquia. Medellín (Colombia).


Abstract

Currently, transcranial stimulation for CVA treatment is based on the interhemispheric rivalry model. This model has proven to have many anomalies, necessitating a new paradigm. Spontaneous recovery from post-CVA hemiplegia has an ontogenetic pattern. We reanalyzed the 2008 longitudinal London study and found that cortical disinhibition is the mechanism for ontogenetic CVA recovery. We propose that transcranial stimulation with 10 Hz rTMS or anode electrical microstimulation can produce CVA recovery similar to spontaneous recovery. (Acta Med Colomb 2022; 47. DOI:https://doi.org/10.36104/amc.2022.2466).

Keywords: transcranial magnetic stimulation; motor evoked potential; cerebrovascular accident rehabilitation; neural plasticity; neural inhibition

Resumen

Actualmente la aplicación de la estimulación transcraneal para el tratamiento del ACV se realiza con base en el modelo de rivalidad interhemisférica. Este modelo ha mostrado muchas anomalías que hacen necesario un nuevo paradigma. La recuperación espontánea de la hemiplejia post-ACV tiene patrón ontogénico. Reanalizamos el estudio longitudinal de Londres 2008 y encontramos que su propuesta corresponde al mecanismo de recuperación ontogénica del ACV. Planteamos que la estimulación transcraneal, utilizando EMTr a 10 Hz o microestimulación eléctrica anódica, podría recuperar el ACV de manera similar a la recuperación espontánea. (Acta Med Colomb 2022; 47. DOI:https://doi.org/10.36104/amc.2022.2466).

Palabras clave: estimulación magnética transcraneal; potenciales evocados motores; rehabi litación de accidente cerebrovascular; plasticidad neuronal; inhibición neural

Introduction

For the last 15 years studies have been done with tran scranial stimulation for cerebrovascular accident (CVA) rehabilitation, based on the interhemispheric competition model 1. According to this model, after the CVA, the contralesional hemisphere worsens the function of the injured hemisphere. Thus, the objective of CVA treatment with transcranial stimulation is to increase the excitability of the injured hemisphere or inhibit the contralesional hemi sphere 2. However, this model has been questioned from the beginning 3, there is no evidence to date to support its clinical use 4, patients with severe deficit may worsen 5, and its neurophysiological bases are wrong 6. In light of these very significant anomalies, a new paradigm is needed.

Natural or spontaneous CVA recovery is produced through brain plasticity mechanisms 4. Spontaneous recov ery from post-CVA hemiplegia has an ontogenetic pattern, first recovering axial-proximal and then distal movement 7,8. If we understand the mechanisms of ontogenetic recovery, we can design strategies to achieve CVA recovery similar to spontaneous recovery 9.

Ontogenetic CVA recovery, reopening of critical periods and cortical disinhibition

Coupling between the genetically determined brain con nectivity and the individual's experiences occurs during the critical neurodevelopment periods 10. Reopening the critical periods causes rejuvenation of brain plasticity. One way of reopening the critical periods is through cortical disinhibition 11. The most studied critical period is that of ocular dominance. Children with strabismus or congenital cataracts will have normal vision if they undergo surgery during the critical period; otherwise, the children will develop amblyopia. Since cortical disinhibition improves amblyopia 12-16, this mechanism is thought to reopen the critical period of ocular dominance.

The critical periods are rich in brain plasticity, and their reopening has been suggested as treatment for CVAs 10,17. Ontogenetic CVA recovery is accompanied by an increase in proteins related to the critical periods 8. The London group confirmed the pattern of post-CVA ontogenetic recovery and found that this recovery is related to cortical disinhibition processes at three months 18. Recently, critical motor period reopening following a CVA was shown to occur in the second and third months 19. Cortical disinhibition may also open the critical motor period in patients with CVAs.

Recovery from post-CVA hemiplegia and phased recruitment

The London group proposed that the recovery of patients with severe CVAs is produced by phased recruitment of the contralesional premotor cortex (PMC) and the ipsilesional primary motor cortex (M1) 18. Most of the corticoreticulospinal tract (CRST) originates in the PMC 20. In post-CVA adults, the CRST exerts most of its connectivity on the proximal muscles 21. Most of the corticospinal tract originates from the M1, which is mainly responsible for distal extremity movement 22. Thus, we speculate that the London group's proposal is in line with the ontogenetic pattern of CVA recovery 9.

Brain stimulation for CVA recovery with an ontogenetic pattern

Repetitive transcranial magnetic stimulation (rTMS) at 10 Hz induces cortical disinhibition 23. Since the application of 10 Hz rTMS improves adult patients with amblyopia 14, it is suggested that this procedure may reopen the critical period of ocular dominance.

We report a patient with chronic post-brainstem CVA hemiplegia, who after two cycles of bilateral 10 Hz rTMS, initially used as treatment for dysphagia, recovered axial-proximal movement and postural control 24. After a third cycle, minimal voluntary distal movement appeared 9. We speculate that our patient's recovery, with an ontogenetic pattern, was triggered by reopening critical periods using rTMS at a frequency which induces cortical disinhibition. Howerver, since this is a report of a single case, we cannot rule out spontaneous improvement or the placebo effect.

There are two situations to keep in mind. First, the re sponse to rTMS depends on the baseline levels of cortical inhibition, which could explain why some patients respond to rTMS treatment and others do not 25,26. The second is that early disinhibition should be avoided, as this can worsen the CVA's severity in animals 27.

Conclusion

We propose that the ontogenetic post-CVA recovery model is related to reopening of the critical motor period due to cortical disinhibition. We suggest that cortical dis inhibition induced by 10 Hz rTMS can reopen this period and allow CVA recovery similar to spontaneous recovery. Since anode electrical microstimulation induces cortical disinhibition 28 and improves amblyopia 16, it may also be used reopen the critical motor period.

References

1. Hummel FC, Cohen LG. Non-invasive brain stimulation: a new strategy to improve neurorehabilitation after stroke? Lancet Neurol 2006; 5: 708-12. [ Links ]

2. Castillo G, Garcia G, Bojacá G. La estimulación magnética transcraneal (EMT) en la evaluación y el tratamiento del ataque cerebrovascular (ACV). Acta Neurol Colomb 2009; 25:262-266. [ Links ]

3. Fregni F, Pascual-Leone A. Technology insight: noninvasive brain stimulation in neurology-perspectives on the therapeutic potential of rTMS and tDCS. Nat Clin Pract Neurol 2007;3: 383-93 [ Links ]

4. Benninger DH, Ni Z, Hallett M. Extracranial neuromodulation. In: Jankovic J, Mazziotta JC, Pomeroy SL, Newman NJ eds. Bradley and Daroff's Neurology in Clinical Practice. 8th ed. Elsevier. 2021. pp 472-482. [ Links ]

5. Bradnam LV, Stinear CM, Barber PA, Byblow WD. Contralesional hemisphere control of the proximal paretic upper limb following stroke. Cereb Cortex. 2012; 22: 2662-71. [ Links ]

6. Xu J, Branscheidt M, Schambra H, Steiner L, Widmer M, Diedrichsen J, et al. Rethinking interhemispheric imbalance as a target for stroke neurorehabilita tion. Ann Neurol 2019; 85: 502-513. [ Links ]

7. Twitchell TE. The restoration of motor function following hemiplegia in man. Brain 1951; 74: 443-80. [ Links ]

8. Cramer SC, Chopp M. Recovery recapitulates ontogeny. Trends Neurosci 2000; 23: 265-71. [ Links ]

9. Castillo-Castelblanco GA, Tuso-Montenegro LF, Jaimes-Martínez LF, Bitar-Cárdenas MP, Ramírez-García SF, Arcos-Burgos M. Mejoría del ACV con estimulación magnética recapitula la ontogenia. Acta Med Colomb 2022; 47. http://www.actamedicacolombiana.com/ojs/index.php/actamed/article/view/2253Links ]

10. Sanes JR, Jessell TM. Experience and the refinement of synaptic connections. In: Kandel ER, Schwartz JH, Jessell TM, Siegelbaum SA, Hudspeth AJ eds. Principles of neural science. 5th ed. New York: McGraw-Hill; 2012. p. 1259-82. [ Links ]

11. Patton MH, Blundon JA, Zakharenko SS. Rejuvenation of plasticity in the brain: opening the critical period. Curr Opin Neurobiol 2019; 54: 83-9. [ Links ]

12. Duffy FH, Burchfiel JL, Conway JL. Bicuculline reversal of deprivation am-blyopia in the cat. Nature 1976; 260: 256-7. [ Links ]

13. Maya Vetencourt JF, Sale A, Viegi A, Baroncelli L, De Pasquale R, O'Leary OF, et al. The antidepressant fluoxetine restores plasticity in the adult visual cortex. Science 2008; 320: 385-8. [ Links ]

14. Thompson B, Mansouri B, Koski L, Hess RF. Brain plasticity in the adult: modulation of function in amblyopia with rTMS. Curr Biol. 2008; 18: 1067-71. [ Links ]

15. Harauzov A, Spolidoro M, DiCristo G, De Pasquale R, Cancedda L, Pizzorusso T, et al. Reducing intracortical inhibition in the adult visual cortex promotes ocular dominance plasticity. J Neurosci 2010; 30: 361-71. [ Links ]

16. Spiegel DP, Li J, Hess RF, Byblow WD, Deng D, Yu M, Thompson B. Tran-scranial direct current stimulation enhances recovery of stereopsis in adults with amblyopia. Neurotherapeutics 2013; 10: 831-9. [ Links ]

17. Hensch TK, Bilimoria PM. Reopening windows: Manipulating critical periods for brain development. Cerebrum 2012; 12: 11. [ Links ]

18. Swayne OB, Rothwell JC, Ward NS, Greenwood RJ. Stages of Motor Output Reorganization after Hemispheric Stroke Suggested by Longitudinal Studies of Cortical Physiology. Cereb Cortex 2008; 18: 1909-22. [ Links ]

19. Dromerick AW, Geed S, Barth J, Brady K, Giannetti ML, Mitchell A, Edwardson MA, et al. Critical Period After Stroke Study (CPASS): A phase II clinical trial testing an optimal time for motor recovery after stroke in humans. Proc Natl Acad Sci U S A. 2021; 118: e2026676118. [ Links ]

20. Jang SH, Lee SJ. Corticoreticular Tract in the Human Brain: A Mini Review. Front Neurol 2019; 10: 1188. [ Links ]

21. Taga M, Charalambous CC, Raju S, Lin J, Zhang Y, Stern E et al. Cortico-reticulospinal tract neurophysiology in an arm and hand muscle in healthy and stroke subjects. J Physiol 2021; 599: 3955-3971. [ Links ]

22. Jang SH. The corticospinal tract from the viewpoint of brain rehabilitation. J Rehabil Med 2014; 46: 193-9. [ Links ]

23. Pascual-Leone A, Tormos JM, Keenan J, Tarazona F, Cañete C, Catalá MD. Study and modulation of human cortical excitability with transcranial magnetic stimulation. J Clin Neurophysiol. 1998; 15: 333-43. [ Links ]

24. Castillo G, Tuso L, Rodriguez J, Arcos-Burgos M, Ramirez S. Recovering postural control with rTMS. Case report. Abstract. Brain Stimulation 2019;12:422 [ Links ]

25. Bagnato S, Currà A, Modugno N, Gilio F, Quartarone A, Rizzo V, et al. One-hertz subthreshold rTMS increases the threshold for evoking inhibition in the human motor cortex. Exp Brain Res. 2005; 160: 368-74. [ Links ]

26. Daskalakis ZJ, Moller B, Christensen BK, Fitzgerald PB, Gunraj C, Chen R. The effects of repetitive transcranial magnetic stimulation on cortical inhibition in healthy human subjects. Exp Brain Res 2006; 174: 403-12. [ Links ]

27. Clarkson AN, Huang BS, Macisaac SE, Mody I, Carmichael ST. Reducing excessive GABA-mediated tonic inhibition promotes functional recovery after stroke. Nature 2010; 468:305-9. [ Links ]

28. Nitsche MA, Seeber A, Frommann K, Klein CC, Rochford C, Nitsche MS, et al. Modulating parameters of excitability during and after transcranial direct current stimulation of the human motor cortex. J Physiol 2005; 568: 291-303 [ Links ]

Received: November 14, 2021; Accepted: September 01, 2022

*Correspondencia: Dr. Gabriel Augusto Castillo-Castelblanco. Bogotá, D.C. (Colombia). E-Mail: castilloneuro@yahoo.com

Creative Commons License This is an open-access article distributed under the terms of the Creative Commons Attribution License