SciELO - Scientific Electronic Library Online

 
vol.31 número2Hamiltonian optimization in a power converter circuitAn introduction to absolute retracts and absolute neighborhood retracts índice de autoresíndice de assuntospesquisa de artigos
Home Pagelista alfabética de periódicos  

Serviços Personalizados

Artigo

Indicadores

Links relacionados

  • Em processo de indexaçãoCitado por Google
  • Não possue artigos similaresSimilares em SciELO
  • Em processo de indexaçãoSimilares em Google

Compartilhar


Revista Integración

versão impressa ISSN 0120-419X

Integración - UIS vol.31 no.2 Bucaramanga jul./dez. 2013

 

Estimativos L2 para una clase de operadores
pseudodiferenciales definidos en el toro

DUVÁN CARDONA*

Universidad del Valle, Departamento de Matemáticas, A.A 25360, Cali, Colombia.


Resumen. En este trabajo se establecen estimativos L2 para operadores pseudodiferenciales definidos en el toro. Los operadores considerados surgen del estudio de operadores entre grupos abelianos localmente compactos.
Palabras claves: Operadores pseudo-diferenciales, continuidad en L2, grupos localmente compactos.
MSC2010: 47G30, 65R10.


L2-Estimates for a class of pseudo-differential operators defined on the torus

Abstract. In this work we establish L2 estimates from pseudo-differential operators defined on the torus. Such operators arise from the study of operators on locally compact abelian groups.
Keywords: Pseudo-differential operators, L2-boundedness, locally compact groups.


Texto Completo disponible en PDF


Referencias

[1] Agranovich M.S., "Spectral properties of elliptic pseudo-differential operators on a closed curve", Funct. Anal. Appl. 13 (1979), 279-281.         [ Links ]

[2] Ashino R., Nagase M., and Vaillancourt R., "Pseudo-differential Operators on Lp spaces", Cubo 6 (2004), no. 3, 91-129.         [ Links ]

[3] Calderón A. and Vaillancourt R., "On the boundedness of pseudo-differential operators", J. Math. Soc. Japan 23 (1971), 374-378.         [ Links ]

[4] Delgado J., "Lp bounds for pseudo-differential operators defined on the torus", Operators Theory: Advances and Applications 231 (2013), 103-116.         [ Links ]

[5] Molahajloo S. and Wong M.W., "Pseudo-Differential operators on S1", in New developments on Pseudo-Differential operators, Eds. Luigi Rodino and M.W. Wong. (2008), 297-306.         [ Links ]

[6] Ruzhansky M. and Turunen V., Pseudo-differential Operators and Symmetries: Background Analysis and Advanced Topics, Birkhaüser-Verlag, Basel, 2010.         [ Links ]

[7] Ruzhansky M. and Turunen V., "Quantization of Pseudo-Differential Operators on the Torus", J. Fourier Annal Appl. 16 (2010), 943-982.         [ Links ]

[8] Taylor M., "Pseudodifferential Operators", Four Lectures at MSRI, September 2008, p. 16.         [ Links ]

[9] Wong M.W., "Discrete Fourier Analysis", Birkhaüser: Germany, 2011.         [ Links ]


*E-mail: duvanc306@gmail.com
Recibido: 20 de agosto de 2013, Aceptado: 19 de noviembre de 2013.