SciELO - Scientific Electronic Library Online

 
vol.33 issue2The problem of the first return attached to a pseudodifferential operator in dimension 3Groenewold-von Neumann product via Segal-Bargmann transform author indexsubject indexarticles search
Home Pagealphabetic serial listing  

Services on Demand

Journal

Article

Indicators

Related links

  • On index processCited by Google
  • Have no similar articlesSimilars in SciELO
  • On index processSimilars in Google

Share


Revista Integración

Print version ISSN 0120-419X

Integración - UIS vol.33 no.2 Bucaramanga July/Dec. 2015

 

Números Tribonacci, S-unidades
y triplas diofánticas

CARLOS ALEXIS GÓMEZ RUIZ*

Universidad del Valle, Departamento de Matemáticas, Cali, Colombia.


Resumen. La sucesión Tribonacci T := {Tn}n ≥0 tiene valores iniciales T0 = T1 = 0, T2 = 1 y cada término posterior es la suma de los tres términos precedentes. En este artículo, estudiamos la ecuación Tn = kTm, donde k es una S-unidad, para un conjunto finito S de primos. Particularmente, mostramos que cualquier par de miembros de la tripla diofántica {9, 56, 103} asociada a T + 1, no se puede extender a otra tripla diofántica asociada a T + 1.

Palabras clave: Números Tribonacci, triplas diofánticas, formas lineales en logaritmos de números algebraicos.
MSC2010: 11B37, 11B39, 11J86.


Tribonacci numbers, S-units and
diophantine triples

Abstract. The Tribonacci sequence T := {Tn}n ≥0 has initial values T0 = T1 = 0, T2 = 1 and each term afterwards is the sum of the preceding three terms. In this paper, we study the equation Tn = kTm, where k is an S-unit, for a finite set S of primes. In particular, we show that any two members of the diophantine triple {9, 56, 103} associated to T + 1, can not be extended to other diophantine triple associated to T + 1.

Keywords: Tribonacci numbers, diophantine triples, linear forms in logarithms of algebraic numbers.


Texto Completo disponible en PDF


Referencias

[1] Arkin J., Hoggatt V.E. and Strauss E.G., "On Euler's solution of a problem of Diophantus", Fibonacci Quart. 17 (1979), No. 4, 333-339.         [ Links ]

[2] Baker A. and Davenport H., "The equations 3x2- 2 = y2 and 8x2 - 7 = z2", Quart. J. Math. Oxford Ser. (2) 20 (1969), 129-137.         [ Links ]

[3] Bugeaud Y. and Dujella A., "On a problem of Diophantus for higher powers", Math. Proc. Cambridge Philos. Soc. 135 (2003), No. 1, 1-10.         [ Links ]

[4] Bugeaud Y. and Gyarmati K., "On generalizations of a problem of Diophantus", Illinois J. Math. 48 (2004), No. 4, 1105-1115.         [ Links ]

[5] Bravo J.J. and Luca F., "Powers of two in generalized Fibonacci sequences", Rev. Colombiana Mat. 46 (2012), No. 1, 67-79.         [ Links ]

[6] Cohen H., Number Theory, Vol. I: Tools and Diophantine equations, Springer, New York, 2007.         [ Links ]

[7] Dresden G.P.B. and Du Z., "A simplified Binet formula for k-generalized Fibonacci numbers", J. Integer Seq. 17 (2014), No. 4, Article 14.4.7, 9 pp.         [ Links ]

[8] Dujella A., "There are only finitely many Diophantine quintuples", J. Reine Angew. Math. 566 (2004), 183-214.         [ Links ]

[9] Dujella A., "On the number of Diophantine m-tuples", Ramanujan J. 15 (2008), No. 1, 37-46.         [ Links ]

[10] Elsholtz C., Filipin A. and Fujita Y., "On Diophantine quintuples and D(-1)-quadruples", Monatsh. Math. 175 (2014), No. 2, 227-239.         [ Links ]

[11] Fuchs C., Luca F. and Szalay L., "Diophantine triples with values in binary recurrences", Ann. Sc. Norm. Super. Pisa Cl. Sc. (5) 7 (2008), No. 4, 579-608.         [ Links ]

[12] Fuchs C., Luca F. and Szalay L., "Diophantine triples with values in k-generalized Fibonacci sequences" (preprint).         [ Links ]

[13] Gibbs P., "Some rational Diophantine sextuples", Glas. Mat. Ser. III 41 (2006), No. 2, 195-203.         [ Links ]

[14] Gómez Ruiz C.A. and Luca F., "On the largest prime factor of the ratio of two generalized Fibonacci numbers", J. Number Theory 152 (2015), 182-203.         [ Links ]

[15] Gómez Ruiz C.A. and Luca F., "Tribonacci Diophantine quadruples", Glas. Mat. Ser. III 50 (2015), No. 1, 17-24.         [ Links ]

[16] Gómez Ruiz C.A. and Luca F., "Diophantine quadruples in the sequence of shifted Tribonacci numbers", Publ. Math. Debrecen 86 (2015) No. 3-4, 473-491.         [ Links ]

[17] Gyarmati K., Sárközy A. and Stewart C.L., "On shifted products which are powers", Mathematika 49 (2002), No. 1-2, 227-230.         [ Links ]

[18] Gyarmati K. and Stewart C.L., "On powers in shifted products", Glas. Mat. Ser. III 42 (2007), No. 2, 273-279.         [ Links ]

[19] Luca F., "On shifted products which are powers", Glas. Mat. Ser. III 40 (2005), No. 1, 13-20.         [ Links ]

[20] Luca F. and Szalay L., "Fibonacci Diophantine triples", Glas. Mat. Ser. III 43 (2008), No. 2, 253-264.         [ Links ]

[21] Luca F. and Szalay L., "Lucas Diophantine triples", Integers 9 (2009), 441-457.         [ Links ]

[22] Luca F. and Oyono R., "An exponential Diophantine equation related to powers of two consecutive Fibonacci numbers", Proc. Japan Acad. Ser. A Math. Sci. 87 (2011), No. 4, 45-50.         [ Links ]

[23] Lucas E., "Théorie des fonctions numériques simplement périodiques", Amer. J. Math. 1 (1878), No. 2-3, 184-240.         [ Links ]

[24] Matveev E.M., "An explicit lower bound for a homogeneous rational linear form in the logarithms of algebraic numbers II", Izv. Math. 64 (2000), No. 6, 1217-1269.         [ Links ]

[25] Spickerman W.R., "Binet's formula for the Tribonacci sequence", Fibonacci Quart. 20 (1982), No. 2, 118-120.         [ Links ]


*Email: carlos.a.gomez@correounivalle.edu.co
Recibido: 01 de julio de 2015, Aceptado: 04 de agosto de 2015.
Para citar este artículo: C.A. Gómez Ruiz, Números Tribonacci, S-unidades y triplas diofánticas, Rev. Integr. Temas Mat. 33 (2015), No. 2, 121-133.