SciELO - Scientific Electronic Library Online

vol.23 issue3Phytoplankton Functional Groups in a High-Rate Algal Pond Used for the Bioremediation of Landfill LeachateGROWTH PATTERN OF THE TROPICAL HIGHLAND GYMNOPTHALMID LIZARD Anadia bogotensis IN CAPTIVITY CONDITIONS author indexsubject indexarticles search
Home Pagealphabetic serial listing  

Services on Demand



Related links

  • On index processCited by Google
  • Have no similar articlesSimilars in SciELO
  • On index processSimilars in Google


Acta Biológica Colombiana

Print version ISSN 0120-548X

Acta biol.Colomb. vol.23 no.3 Bogotá Sep./Dec. 2018 

Brief Notes


Exposición aguda de juveniles de róbalo común a niveles subletales de nitrato

Fabiola PEDROTTI1  *  , Caio MAGNOTTI1  , Fabio STERZELECKI1  , Vinicius CERQUEIRA1 

1 Laboratory of Marine Fisheries (LAPMAR), Aquaculture Department, Agricultural Sciences Center (CCA), Federal University of Santa Catarina (UFSC). Rua dos Coroas 503. Florianópolis, SC, Brazil.


The present study aimed to evaluate nitrate acute toxicity in cultured common snook Centropomus undecimalis juveniles. Fish (20.35±6.10 g and 13.90±1.75 cm) were submitted to a control treatment (without nitrate addition) plus 20 increasing concentrations of nitrate up to 2735 mg L-1 obtained by sodium nitrate. System was semi-static, with 100 % daily water renewed and sodium nitrate addition to maintain the respective concentrations. Water temperature was 20.99±0.55 °C, dissolved oxygen 6.79±0.21 mg L-1, pH 8.23±0.10, alkalinity 141.80±7.68 mg L-1 CaCO3, salinity 33.47±3.75 g L-1, total ammonia and nitrite less than 1 mg L-1. During experimental period (96 h), no mortalities were observed in fish with or without nitrate addition. Compared to other species, the common snook presents higher tolerance to nitrate exposition. Based on the present findings, the acute nitrate exposure up to 2735 mg L-1 does not present lethal risk for common snook juveniles.

Key words: Centropomidae; marine fish; nitrogen


El presente estudio tuvo como objetivo evaluar la toxicidad aguda de nitrato en juveniles cultivados del róbalo común Centropomus undecimalis. Los peces (20,35±6,10 g y 13,90±1,75 cm) se sometieron a un tratamiento control (sin adición de nitrato) además de más de 20 concentraciones crecientes de nitrato hasta 2735 mg L-1 obtenidas con nitrato de sodio. El sistema era semiestático, con 100 % de renovación diaria de agua y adición de nitrato de sodio para mantener las respectivas concentraciones. La temperatura del agua fue 20,99±0,55 °C, oxígeno disuelto 6,79±0,21 mg L-1, pH 8,23±0,10, alcalinidad 141,80±7,68 mg L-1 CaCO3, salinidad 33,47±3,75 g L-1, amoníaco total y nitrito menor que 1 mg L-1. Durante el período experimental, no se observaron mortalidades en peces con o sin adición de nitrato. Comparado con otras especies, el róbalo común es más resistente a exposición de nitrato. Con base en los hallazgos actuales, la exposición aguda a nitrato hasta 2735 mg L-1 no presenta un riesgo letal para los juveniles de róbalo.

Palabras-clave: Centropomidae; nitrógeno; peces marinos

As nitrate is the final product in nitrification process, it may reach high concentrations, especially in recirculating aquaculture systems (Hamlin, 2006). In this case, sublethal or lethal effects might occur in fish (Poerch et al., 2007), affecting growth and reproduction (Hamlin et al., 2008), endocrine functions and secondary responses of stress (Hamlin, 2006; Pottinger, 2017) and also histopathologies in gills, esophagus and brain (Shimura et al., 2004; Rodrigues et al., 2011). However, little attention has been given in literature (Rodrigues et al., 2011) and mechanisms of nitrate toxicity are still poorly understood in marine fish (Hamlin, 2006).

Among centropomid fish, the common snook Centropomus undecimalis (Bloch 1972) is one of the most promising species for aquaculture (Souza-Filho and Cerqueira, 2003) and has great potential considering the Brazilian coast (Cavalli et al., 2011). Found in tropical and subtropical estuaries and coastal environments of the Atlantic Ocean (Brennan et al., 2006), it has been studied in America, as the United States (Hauville et al., 2016; Yanes-Roca et al., 2009), Mexico (Ibarra-Castro, Jimenez-Martinez), Colombia (Cruz-Botto et al., 2018), Venezuela (Figueredo-Rodrigues and Fuentes, 2018) and Brazil (Cerqueira et al., 2017; Pedrotti et al., 2018; Michelotti et al., 2018, Passini et al., 2018). Because no information is available about nitrate safe levels for this species, the present study aimed to evaluate nitrate acute toxicity in cultured common snook juveniles.

All animal handlings were in according accordance with to the Ethic Committee on the Animal Use of the UFSC (PP00861 n° 82/CEUA/PROPESQ/2013). Fish (20.35±6.10 g and 13.90±1.75 cm) (Passini et al., 2016) were acclimated for ten days fed ad libitum with commercial feed (45 % PB), in 100 % renewed water per day with aeration. Treatments consisted of a control, without nitrate addition, plus 20 increasing concentrations of nitrate (100, 250, 400, 550, 700, 850, 1000, 1150, 1300, 1450, 1600, 1750, 1900, 2000, 2200, 2300, 2400, 2500, 2600 and 2735 mg L-1) obtained by addition of sodium nitrate (Dynamics, Sâo Paulo, Brazil). Trial was carried out in triplicate for 96 h, using 60 circular fiber tanks filled with 60 L of marine water, containing five fish in each, observed twice a day (08 am and 06 pm). System was semi-static, with 100 % water renewed daily and sodium nitrate addition to maintain the respective concentrations. Fish were maintained at 20.99±0.55 °C, dissolved oxygen 6.79±0.21 mg L-1, pH 8.23±0.10, alkalinity 141.80±7.68 mg L-1 CaCO3 salinity 33.47±3.75 g L-1, total ammonia and nitrite less than 1 mg L-1.

During experimental period (96 h), no mortalities were observed in fish with or without nitrate addition. Nonetheless, considering toxicant safety levels are equivalents to 10 % of LC50 96 h (Sprague, 1971), fish may have suffered sublethal effects. Despite mechanisms of nitrate toxicity in fish are not completely understood (Hamlin, 2006), increasing methaemoglobin levels appears to be associated, causing mortality due to suffocation (Camargo et al., 2005).

It is known nitrate toxicity varies mainly among species (Rodrigues, 2011), fish size (Hamlin, 2006) and water salinity (Tisai and Chen, 2002). Considering the survival rate presented in this study, the common snook presents great resistence to nitrate when compared to other species (Knepp and Arkin, 1973; Rubin and Elmaraghy, 1977; Kincheloe et al., 1979; Frakes and Hoff, 1982; Pierce et al., 1993; Tilak et al. 2007). Regarding other marine fish, nitrate median lethal concentration (LC50) 96 h were 1006 mg L-1 for Florida pompano juveniles (Pierce et al., 1993), 1522 mg L-1 for mullet fingerlings (Poersch et al., 2007) and 1829 mg L-1 for cobia juveniles (Rodrigues et al., 2011). Thus, as nitrate toxicity significantly depends on specific variations, it is essential to study its effects on different species (Poerch et al., 2007).

In this context, acute toxicity tests are important tools for determining nitrate safety levels in aquaculture, especially considering recirculation systems (Rodrigues et al., 2011). Based on the present findings, the acute exposure of nitrate up to 2735 mg L-1 does not present lethal risk for common snook juveniles.


Brennan NP, Darcy MC, Leber KM. Predator-free enclosures improve post-release survival of stocked common snook. J Exp Mar Bio Ecol., 2006;335(2):302-311. Doi:10.1016 j.jembe.2006.04.001. [ Links ]

Camargo JA, Alonso A, Salamanca A. Nitrate toxicity to aquatic animals: a review with new data for freshwater invertebrates. Chemosphere. 2005;58:1255-1267. Doi:10.1016/j.chemosphere.2004.10.044. [ Links ]

Cavalli RO, Domingues EC, Hamilton S. Desenvolvimento da produção de peixes em mar aberto no Brasil: possibilidades e desafios. Revista Brasileira de Zootecnia. 2011;40(supl):155-164. [ Links ]

Cerqueira VR, Carvalho, CVC, Sanches EG, Passini G, Baloi M, Rodrigues, RV. Manejo de reprodutores e controle da reprodução de peixes marinhos da costa brasileira. Rev Bras Reprod Anim. 2017; 41:94-102. [ Links ]

Cruz-Botto S, Roca-Lanao B, Gaitán-Ibarra S, Chaparro-Muñoz N, Villamizar N. Natural vs laboratory conditions on the reproductive biology ofcommon snook Centropomus undecimalis (Bloch, 1792). Aquaculture. 2018;482:9-16. Doi:10.1016/j.aquaculture.2017.09.013. [ Links ]

Figueredo-Rodríguez AJ, Fuentes JL. Monogenosis en juveniles de Centropomus undecimalis (Bloch, 1792) (Perciformes: Centropomidae) de la Laguna la Restinga, Isla de Margarita, Venezuela. Bol Inst Oceanogr Venez. 2018;56(02). [ Links ]

Frakes T, Hoff FH. Effect of high nitrite-N on the growth and survival of juvenile and larval anemone ish, Amphiprion ocellaris. Aquaculture . 1982;29:155-158. Doi:10.1016/0044-8486(82)90042-4. [ Links ]

Hamlin HJ. Nitrate toxicity in Siberian sturgeon (Acipenser baeri). Aquaculture . 2006;253:688-693. Doi:10.1016/j.aquaculture.2005.08.025. [ Links ]

Hamlin HL, Moore BC, Edwards TM, Larkin ILV, Boggs A, High WJ et al. Nitrate-induced elevations in circulating sex steroid concentrations in female Siberian sturgeon (Acipenser baeri) in commercial aquaculture. Aquaculture . 2008;281:118-125. Doi:10.1016/j.aquaculture.2008.05.030. [ Links ]

Hauville MR., Main KL, Migaud H, Gordon Bell J. Fatty acid utilization during the early larval stages of Florida pompano (Trachinotus carolinus) and Common snook (Centropomus undecimalis). Aquac res. 2016;47(5):1443-1458. Doi:org/10.1111/are.12602. [ Links ]

Ibarra-Castro L, Alvarez-Lajonchère L, Rosas C, Palomino-Albarrán IG, Holt GJ, Sanchez-Zamora A. GnRHa-induced spawning with natural fertilization and pilot-scale juvenile mass production of common snook, Centropomus undecimalis (Bloch, 1792). Aquaculture . 2011;319(3-4):479-483. [ Links ]

Jimenez-Martinez LD, Alvarez-González CA, Tovar-Ramírez D, Gaxiola G, Sanchez-Zamora A, Moyano FJ, Perales-García N. Digestive enzyme activities during early ontogeny in Common snook (Centropomus undecimalis). Fish Physiol Biochem. 2012;38(2):441-454. [ Links ]

Kincheloe JW, Wedemeyer GA, Koch DL. Tolerance of developing salmonid eggs and fry to nitrate exposure. Bull Environ Contam Toxicol. 1979;23:575-578. [ Links ]

Knepp GL, Arkin GF. Ammonia toxicity levels and nitrate tolerance of channel catfish. N Am J Aquac. 1973;35:221-224. Doi:10.1577/1548-8659(1973)35[221:ATLANT]2.0.CO;2. [ Links ]

Michelotti BT, Passini G, Carvalho C, Salbego J, Mori NC, Rodrigues RV, Cerqueira VR. Growth and metabolic parameters of common snookjuveniles raised in freshwater with different water hardness. Aquaculture . 2018;482:31-35. Doi:10.1016/j.aquaculture.2017.08.029. [ Links ]

Passini G, Sterzelecki FC, de Carvalho CVA, Baloi MF, Naide V., Cerqueira VR. 17<x-Methyltestosterone implants accelerate spermatogenesis in common snook, Centropomus undecimalis, during first sexual maturation. Theriogenology. 2018;106:134-140. Doi:10.1016/j.theriogenology.2017.10.015. [ Links ]

Passini G, Carvalho CVA, Sterzelecki FC, Cerqueira VR. Induction of sex inversion in common snook (Centropomus undecimalis) males, using 17-ß oestradiol implants. Aquac Res. 2016;47:1090-1099. Doi:10.1111/are.12565. [ Links ]

Pedrotti F, Martins ML, Baloi M, Magnotti C, Scheuer F, Sterzelecki F, Cerqueira V. Mortality, hematology, and histopathology of common snook Centropomus undecimalis (Perciformes: Centropomidae) exposed to acute toxicity of ammonia. J Appl Aquac. 2018;1-13. Doi:10.1080/10454438.2018.1443049. [ Links ]

Pierce RH, Weeks JM, Prappas JM. Nitrate toxicity to five species of marine fish. J World Aquac Soc. 1993;24:105-107. Doi:10.1111/j.1749-7345.1993.tb00156.x. [ Links ]

Poersch LH, Santos MH, Miranda Filho K, Wasielesky JrW. Efeito agudo do nitrato sobre alevinos da tainha Mugil platanus (Pisces: Mugilidae). Bol Inst Pesca. 2007;33(2):247-252. [ Links ]

Pottinger TG. Modulation of the stress response in wild fish is associated with variation in dissolved nitrate and nitrite. Environ Pollut. 2017;225:550-558. Doi:10.1016/j.envpol.2017.03.021. [ Links ]

Rodrigues RV, Schwarz MH, Delbos BC, Carvalho EL, Romano LA, Sampaio LA. Acute exposure of juvenile cobia Rachycentron canadum to nitrate induces gill, esophageal and brain damage. Aquaculture . 2011;322:223-226. Doi:10.1016/j.aquaculture.2011.09.040. [ Links ]

Rubin AJ, Elmaraghy GA. Studies on the toxicity of ammonia, nitrate and their mixtures to guppy fry. Water Res. 1977;11:927-935. Doi:10.1016/0043-1354(77)90079-3. [ Links ]

Shimura R, Ma YX, Ijiri K, Nagaoka S, Uchiyama M. Nitrate toxicity on visceral organs of medaka fish, Oryzias latipes: aiming to raise fish from egg to egg in space. Biol Sci Space. 2004;18:7-12. [ Links ]

Souza-Filho JJ, Cerqueira VR. Influência da densidade de estocagem no cultivo de juvenis de robalo-flecha mantidos em laboratório. Pesqui Agropecu Bras. 1997;38(11):1317-1322. Doi:10.1590/S0100-204X2003001100010. [ Links ]

Sprague JB. Measurement of pollutant toxicity to fish III. Sublethal effects and "safe" concentrations. Water Res . 1971;5:245-266. Doi:10.1016/0043-1354(71)90171-0. [ Links ]

Tilak KS, Veeraiah K, Raju JMP. Effects of ammonia, nitrite and nitrate on hemoglobin content and oxygen consumption of freshwater fish, Cyprinuscarpio (Linnaeus). J Environ Biol. 2007;28:45-47. [ Links ]

Tisai SJ, Chen JC. Acute toxicity of nitrate on Penaeus monodon juveniles at different salinity levels. Aquaculture . 2002;213:163-170. Doi:10.1016/S0044-8486(02)00023-6. [ Links ]

Yanes-Roca C, Rhody N, Nystrom M, Main KL. Effects offatty acid composition and spawning season patterns on egg quality and larval survival in common snook (Centropomus undecimalis). Aquaculture . 2009;287(3-4):335-340. Doi: 10.1016/j.aquaculture.2008.10.043. [ Links ]

Associate Editor: Alan Giraldo.

Citation/Citar este artículo como: Pedrotti F, Magnotti C, Sterzelecki F, Cerqueira V. Acute exposition of common snook juveniles to sublethal levels of nitrate. Acta biol. Colomb. 2018;23(3):304-306. DOI:

CONFLICT OF INTEREST The authors declare that there is no conflict of interest.

Recibido: 14 de Febrero de 2018; Revisado: 07 de Marzo de 2018; Aprobado: 21 de Junio de 2018

* Forcorrespondence.

Creative Commons License This is an open-access article distributed under the terms of the Creative Commons Attribution License