SciELO - Scientific Electronic Library Online

 
vol.31 número3Analysis of a cascaded multilevel inverter with fault-tolerant controlRating curve estimation using Envisat virtual stations on the main Orinoco river índice de autoresíndice de assuntospesquisa de artigos
Home Pagelista alfabética de periódicos  

Serviços Personalizados

Journal

Artigo

Indicadores

Links relacionados

  • Em processo de indexaçãoCitado por Google
  • Não possue artigos similaresSimilares em SciELO
  • Em processo de indexaçãoSimilares em Google

Compartilhar


Ingeniería e Investigación

versão impressa ISSN 0120-5609

Ing. Investig. v.31 n.3 Bogotá set./dez. 2011

 

Alternatives for erosion control by using conventional coverage, non-conventional coverage and revegetation

Claudia Díaz Mendoza1

1 Civil Engineer. Specialist in Sanitary and Environmental Engineering.. Master in Environmental Management and Audit (pending). Researchgroup GIA, Fundación Universitaria Tecnológico Comfenalco. ing.claudia.diaz@gmail.com


ABSTRACT

Humankind's unsustainable behaviour regarding land-use has negative effects on the environment, leading to loss of fertility and degradation and desertification; this has a direct impact on the decline and deterioration of water resources, soil erosion and thus changes in the weather leading to drier conditions. The foregoing are caused by the misuse of soil2. The way soil resources have suffered gradual deterioration has become evident in Colombia during recent years; this has been produced by erosion and the removal of mass caused by various factors including physical and chemical erosion. All the above, together with negative events such as global climate change and the sedimentation of rivers, means a negative environmental impact .

Soil erosion and desertification are major environmental issues regarding disturbances and threats affecting the arid, semiarid and dry sub-humid Mediterranean region's geo-ecosystems in the third millennium; additionally, economic global change may exacerbate such problems (Ingram et al., 1996; Williams et al., 1996).

Regarding soil deterioration, soil vegetation cover and erosion control and mitigation measures should be introduced by using mechanisms which should be as natural as possible and do not induce fresh impacts on the environment. This literature review has thus documented the state of the art regarding several alternatives for erosion control currently involving bioengineering.

Keywords: composting, erosion, fertile mix, geosynthetics, revegetation.


Received: March 5th 2010 Accepted: November 24th 2010


Basic erosion concepts

Erosion includes the detachment, transport and subsequent deposit of soil or rock by the action of the force of a moving fluid. Erosion can be generated by both water and wind (Suarez, 1998)3.

Erosion and desertification are associated with specific climatic conditions, usually dry seasons; they are also associated with physical-chemical changes in soil induced by unsuitable human activities. Land degradation affects the quality of vegetation cover, water quality, compromises biological potential and affects particular geo-systems' sustainable development.

Soil erosion is a severe form of physical degradation; it is estimated that about 80% of agricultural land around the world suffers moderate to severe erosion and 10% mild to moderate erosion (Lal & Stewart, 1995); 40% of Colombia suffers mild to severe erosion and the Andean region is the most affected, 88% of the area being affected by water erosion (Olmos & Montenegro, 1987)4.

Shoreline erosion intensity is the annual extension (measured in kilometres) of coastline suffering imbalance and begining to suffer coastal erosion. This indicator represents the effects of natural and anthropogenic activity on a particular coastline's dynamic equilibrium which, when being altered, could trigger erosion or accretion of the coast, coastline advance or retreat and variations in marine dynamics by natural and/or induced changes (current erosion of the coastline of the central sector of the Colombian Caribbean coast, January 1996)5.

Table 1 shows the types of erosion and relevant characteristics.

Erosion control and soil stabilisation alternatives are being sought nowadays. It is known that revegetation controls gully erosion by increasing infiltration and reducing run-off. The vegetation physically protects soil from the impact of rainfall and run-off and reduces water flow speed by increasing the ground's hydraulic resistance, thereby decreasing water's erosive effect. If flow speed can be reduced enough, it leads to the settling of some of the material being carried away; natural vegetation can then become regenerated (Hudson, 1982). Growing grass slows runoff from 50% to 60% and soil loss by erosion from 60% to 80% (Morgan, 1986).

Erosion control systems

Bioengineering erosion control would include the use of grasses, vetiver grass, bamboo or guadua and trees, run-off management, circuit breakers, stone-lined and concrete channels, gullies, vegetation barriers, revegetation with sisal fibre cloth (fique), using bamboo with metal mesh, organic soil placement, forks, slopes reinforced with geofabrics, stone gabions and sandbags, bags of concrete and reinforced concrete hexapods. Most technologies used in Colombia are local adaptations.5 The principles of engineering erosion control are basic; vegetation is one of the best natural materials for erosion control but geomanufactured and marketed synthetic applications for erosion control have significantly changed the concept during the last decade. The problem of soil conservation, protection, revegetation and turf reinforcement can be resolved by using many organic and synthetic materials having specific properties which must be met for achieving suitable performance (Carroll et al.,1992).

Geosynthetics are defined as, "permeable fabric used in connection with the ground, foundation, rock, soil or geotechnical engineering" (John, 1987). The geosynthetics used in erosion control are made of natural or synthetic materials, including coconut, sisal, cereal straw, nylon, palm leaves, polypropylene, polyester and polyethylene (Rickson, 2006). Geotextiles' longevity depends on several external facts such as the effect of ultraviolet (UV) degradation due to water temperature. Photon energy can thus be greater than or equal to the strength of chemical bonds between polymers and therefore can break fibres or result in degradation (Khanna, 2005).

Changes in seasonal and daytime temperatures, the atmosphere and dramatic temperature changes affect the characteristics of geotextiles strains and reduce their efficiency by inducing fibre wear. High temperatures accelerate all polymer degradation mechanisms according to Hsuan and Koerner (1993). High tension can cause mechanical wear on the surface during heavy rains; however, the effect of water is less than UV light and cyclic temperature changes (Khanna, 2005).

Geosynthetics can play a vital role in the protection, mitigation and rehabilitation of affected coastal areas. Geosynthetics have been widely used in hydraulic and geotechnical engineering during the last two or three decades. Its use has been wellestablished for the purpose of material separation and erosion control filters (Faure et al., 2006; Liu and Chu, 2006).

Analysis must involve using different types of materials to control erosion because it is considered that revegetation is a slow process which may last hundreds of years; natural revegetation is thus not considered acceptable as a restoration strategy (Cullen et al., 1998). Regarding artificial revegetation, several methods have been widely used to rehabilitate the landscape of rocky slopes (Petersen et al., 2004). Many restoration projects have been undertaken to date; however, they have usually lacked the proper scientific contribution due to a lack of information and knowledge regarding plant species, growth and the natural conditions of a particular soil slope to be treated (Shu et al., 2003).

Current practices, materials and solutions seek to control or recuperate soil erosion caused by rain, wind, run-off and/ or gravity; rolled erosion control products (RECP) is one such solution. The recovery of vegetation on slopes having with little organic material requires the use of products protecting the fertile soil and providing favourable conditions for new vegetation to become established.6

Many traditional erosion control applications have been based on straw and organic material; many designs seek to capture and hold soil in place and facilitate revegetation. Other product categories have been introduced today for specific erosion control, making such products more affordable, technically feasible and environmentally harmonious. Some reports regarding extremely degraded steep slopes have dealt with ecosystem revegetation where natural colonisation of plant species has been a difficult and slow process and has proved to be a complicated and expensive matter (Yuan et al., 2006).

The following control systems for erosion control may be mentioned.

Organic conventional and non-conventional coverage

Different types of mulch have been used for thousands of years to protect seeds and soil from erosive forces and accelerate vegetation establishment. Their benefits would include:

– Assisting in stabilising the soil, immediately reducing erosion produced by wind and water;

– Reducing fluctuations in soil temperatures to promote rapid seed germination and lower temperature stress on seedlings;

– Retaining moisture in a seedbed for rapid seed germination and plant growth; and

– Transforming such cover into valuable organic matter incorporated in the soil to provide longterm moisture and good nutrient retention for plants.

The following could be noted regarding conventional organic coverage:

Dissolved organic coating

Straw and hay are the most widely used organic coating materials. Loose straw and hay fibres however must have sufficient length (10 to 20 centimetres) to be woven and offer the maximum desired effect; the longer the organic residue fibre length, the more effective it is in providing benefits. A dry mulch is usually machine spread on fields ranging from plains to gently sloping land at of 3,370 to 4,490 kg /ha (1.5-2.0 tons/acre); it is ploughed into the soil using dull crimped-centre disc blades.

Clamps (tackifiers)

As slope angle increases, disk techniques are replaced by using viscous sprays to bind organic residues, fibres and soil together. These sprays, which are called binders (tackifiers) usually consist of asphalt emulsions, water distillates, psyllium and sodium alginate. The amount of binder applied varies according to the kind of product, the severity of site conditions, climate and desired application duration.

The following could be noted concerning non-conventional coverage:

Rolled erosion control products (RECP)

When manufacturers were faced by limited conventional organic coating techniques in the late 1960s, then they began developing what has become a diverse group of products known as rolled erosion control products (RECP). This category consists of preformed products, such as organic waste retention networks, open-mesh geotextiles, erosion control coatings and vegetation reinforcement mats. Using this growing family of materials made from woodchips, straw, jute, coir, polyolefins, PVC and nylon has led to designers incorporating long-staple organic coatings' superiority with meshes and dimensionally-stable geotextiles' tensile strength. The US Erosion Control and Technology Council (ECTC) has developed standard terminology for these products, which is presented below:

1) Mulch-control netting (MCN)

The ECTC's official definition is, "a flat-woven fiber, natural or extruded geosynthetic mesh used as temporary and degradable RECP to anchor loose mulches." This product consists of two woven or mesh dimensional fibres having been submitted to a biaxial geosynthetic process used to fasten loose fibre mulch on the type of straw or hay. MCN networks for controlling organic coatings are spread over the sown area, covered with organic waste and then secured with staples or stakes. Because they are not glued or sewn to the organic waste, these belts do not provide the same degree of structural integrity offered by prefabricated coatings for erosion control.

2. Open-weave textile (OWT)

The ECTC's official definition is, "A temporary and degradable RECP composed of processed natural yarns or polymers, intertwined with a binder that is used in erosion control and facilitates the rooting of the vegetation." Open-weave fabrics are processed polyolefin wire moulded into a 2-D matrix. These materials' tight weave allows them to provide erosion control with or without using an underlying layer of organic coating. Moreover, these screens typically display greater tensile strength than most of the above. OWT are usually used in places where greater traction is required, such as steep slopes or as a reinforcing layer for grass. OWT also represent a protective coating on slopes reinforced with geosynthetics in bioengineering facilities, especially where hard stem plants are used as natural stabilising material.

3. Erosion-control blankets (ECB)

The ECTC's official definition is, "A temporary and degradable RECP consisting of natural fibres or processed polymers, linked mechanically, structurally or chemically to form a continuous bond for erosion control and streamlining the process of fixing vegetation." The coatings for erosion control fibres consist of multiple organic / biodegradable synthetic woven material, glued or structurally bonded with mesh. The coatings most used for erosion control are made of straw, wood chips, coconut, polypropylene or a combination sewn or glued inside or through the processed biaxially-orientated nets or natural woven fibre netting. The ECB functional duration may be modified and adapted to a place's specific requirements. Some ECB are designed to last less than three months in places requiring a lot of maintenance to be cut immediately after the grass has taken root, while others are designed to provide longer-lasting protection in applications requiring protection against erosion as long as three years.

4. Turf reinforcement mat (TRM)

The ECTC's official definition is, "A permanent RECP composed of non-degradable synthetic fibres, filaments, nets and / or mesh processed in a continuous three-dimensional matrix. The TRMs can be supplemented with degradable components and are designed to provide immediate protection against erosion, promote the establishment of vegetation and provide long life, reinforcing vegetation during and after maturation.

TRMs are typically used in hydraulic applications such as highflow channels, on steep slopes, embankments and coasts where erosive forces may exceed natural vegetation limits or where the establishment of vegetation is limited. Although some TRMs also contain biodegradable components to supplement their permanent structure, all TRMs must have a permanent three-dimensional structure featuring high-tensile strength to function as a binder having elastic qualities for the roots, stems and plant floor entanglement. Together they form a continuous composite: a living, unified blanket.

A TRM is often used in situations where the "green" alternative is preferred to more rigid structures. A TRM is generally installed to optimise plant stem and/or root interaction with the blanket structure. Traditional installations involve TRM deployment and support in close contact with soil surface. There are two placement methods and their use depends on the type of blanket being used. One method is to place a newly seeded TRM directly on a surface to allow vegetation to grow through the blanket's structure.

In this scenario, the TRM initially acts to prevent the washing away of soil and plant root fixing structures and plants becoming released from the soil surface. This type of installation usually results in strengthening vegetation stems and the natural process of sedimentation filling the blanket and layers of vegetation growing in and through its structure. The second method is to deploy TRM, install the product, then fill it with good quality soil and seed mixture prescribed for this purpose. Vegetation is immediately rooted inside and/or through the structure of the blanket in this type of installation, producing initial, permanent strengthening reinforcement.

Revegetation

Environmental facts affecting the restoration of vegetation

Plants depend closely on the medium in which they operate; it provides the energy, raw materials and space needed and used to grow in. Soil, air and water are its constituent elements. Plants' living conditions arise from their immediate environment resulting from the interaction of various factors which can be grouped as follows:

Climate factors: solar radiation, rainfall, temperature and wind act directly on plants;

Edaphic factors: soil is a physical-biological system that acts in complex ways on vegetation. It is the source and pantry for nutrients and water and it contains the necessary oxygen for roots and microorganism respiration;

Topographic factors: altitude, slope, exposure, guidance and forms of relief exert a modifying action on other environmental factors; and

Physical factors: in turn, divided into:

Temperature: ambient temperature should be taken into account when choosing species for sowing or plant ing. There are certain temperature thresholds for each species, within which their life-cycle un folds; however, the temperature of the atmosphere is not regarded as providing specific data because it does not pinpoint the conditions found in the topsoil, where plant life develops;

Moisture: soil moisture and humidity influence both the time of planting and subsequent plant development. Regarding soil moisture, water availability is the amount of liquid that can be used by plants. It depends on water supply (rainfall or irrigation) and infiltration capacity and soil retention; and

Soil aeration: the soil's atmosphere affects all the proc esses taking place within it, the life of soil microorgan isms and the roots of taller plants depend on it. This also involves the chemical changes taking place in the ground: the absence of O2 inhibits root growth, O2 and CO2 concentration also affects germination, microorgan isms are necessary from the time of germination, the amount of O2 y CO2 is involved in nutrient absorption and oxydoreduction of soil;

Chemical factors: Three factors can affect or even severely limit vegetation development; all of them are edaphic factors arising from the disappearance of surface soil horizons below a crop, resulting from excavation:

Nutrient presence and availability: plants need to have essential elements for their development. Some macro nutrients are required in large amounts: nitrogen, phos phor, sulphur, calcium, magnesium and potas s i u m . Micronutrients are needed in very small doses: i r o n , manganese, boron, zinc and molybdenum. Others may only be essential for particular species: sodium, chlorine, cobalt and vanadium;

Acidity and alkalinity of the soil: the importance of pH as an environmental factor affecting revegetation is due to direct (an environment's acidifying or basifying influ ence can affect plant development conditions) and indirect reasons because of its intervention regard ing other soil characteristics: influencing the speed and quality of humification and mineralisation through its influence on soil microorganisms, influencing the status of certain nutrients characterised by its degree of plant assimilation and soil structure conditions and, therefore, all soil properties derived from that; and

Toxicity: toxicity problems in area neighbouring waste collection and dams are mainly due to the presence of heavy metals (copper, zinc, lead, nickel) and other metals (aluminium, manganese).

Fertile blends

Fertilisers are products for feeding plants. Therefore, fertilising means providing substances of plants or their nutritional substrate. The law contains this definition, "Fertilisers are substances directly or indirectly applied to plants to promote their growth, increase production or improve their quality."7 Certain matters must be considered when using and applying fertilisers: soil characteristics (content and nutrients availability for fertilising, pH and texture), conditions (temperature, amount and distribution of rainfall) and plant characteristics (needs, the root system, crop rotation, farming systems and production measures). Another important basic point regards evaluating the characteristics of fertiliser content and nutrients' chemical form, dissolution process, granule size and their reactions with soil8.

Compost used as fertiliser

Preference in using compost as a nutrient source for crops rather than fresh waste is usually due to the desire to reduce offensive odour (Miller, 1993), toxic effects on crops, reduced water use and the elimination of pathogens and weed seeds in compost (Rink, 1992). However, it is clear that the rate at which nutrients deliver fresh residues is faster than a compost matures (Castellanos and Pratt, 1981). Incomplete composting products such as bokashi provide more nutrients in the short-term than finished compost, as well as incorporating a diverse microbial population to continue decomposition in the field, with the inherent risk of warming on the ground (which must obviously be managed) (Soto, 2001)

The carbon:nitrogen (C:N) ratio in bulk compost decreases during composting, regardless of the composting technique used. A 10:15 ratio is considered stable; however, it can be stabilised long before the compound becomes stabilised (Namkoong et al., 1999, Chefetz et al., 1996) and the final ratio depends on the source material and the method used for measuring N (Hueand Liu, 1995). The proportion of NH4-N NO3-N in the water extract has been suggested as a maturity index.

The long-term intensive influence of NPK fertilisation on soil properties has special characteristics. Potassium fertilisation leads to an accumulation of potassium-exchangeable K, but infiltration is also large and leads to changes in ion coverage of soil colloids and possible imbalance between K, Ca and Mg9.

William Albrecht (1888 to 1974) ensured that the key to fertilisation was balance; he advised ensuring a soil nutrient balance lacking excess or deficiency. The Albrecht theory (also called base saturation theory) is used to guide lime and fertiliser application by measuring and evaluating the proportions of positively-charged nutrients (bases) held in the soil.

Conclusions

The consequences of soil erosion are manifest both in the place that it occurs and outside it (diffuse erosion). Site effects are particularly important concerning agricultural land where soil redistribution and loss, degradation of its structure and entrain-ment of organic matter and nutrients leads to loss of topsoil thickness and a decline in fertility. Erosion also reduces the moisture available in the soil, stressing arid conditions.

The current trend is to make erosion control less aggressive for the environment, meaning that the idea is to use natural, mainly fibre-based, prefabricated materials (organic blankets or screens and bio-rolls or organic fascines), many of them forestry-based (Contreras, V. 2001). Environmental solutions become integrated in soil fertilisation and revegetation to resolve soil erosion issues10.

FOOTNOTES

2Cortés Lombana, Abdón, Suelos colombianos: una mirada desde la Academia, s. d.
3Suárez, Jaime, Estabilidad de taludes y deslizamientos, s. d.
4Rivera P., José Horacio; Sinisterra R., Juan Armando; Calle D., Zoraida, Restauración ecológica de suelos degradados por erosión en cárcavas en el enclave xerofítico de Dagua, Valle del Cauca, Colombia, s. d.
5Cfr. www.Ideam.gov.co, consulted on 08/03/2010. Suárez, Jaime, op. cit.
6Geomatrix, Manto para control de erosión y revegetalización Biotex, s. d.
7Finck, Arnold, Fertilizantes y fertilización, s. c., Reverté.
8Fassbender, Hans W.; Bornemisza, Elmer, Química de suelos con énfasis en suelos de América Latina, s. d.
9Hans W. Fassbender, Bornemisza Elemer. Química de suelos con énfasis en suelos de América Latina , s. d., p. 345.
10Preston, Sullivan, El manejo sustentable de suelos, s. d.


References

Allen, S. R, Evaluation and Standardization of Rolled Erosion Control Products, Geotextiles and Geomembranes., Volume 14, Issues 3-4, March-April 1996, pp. 207-221.

Barbera, G.G., López Bermúdez, F., Romero Díaz, A., Cambios de uso del suelo y desertificación en el Mediterráneo: el caso del Sureste Ibérico., En Acción humana y desertificación en ambientes mediterráneos, 1997.

Bhattacharyya, R., Fullen, M.A., Davies, K., Booth, C.A., Use of palm-mat geotextiles for rainsplash erosion control, Geomorphology., 2010. DOI: 10.1016/j.geomorph.2010.02. 018

Bongcam Vásquez, E., Guía para Compostaje y manejo de suelos., Bogotá, 2003. ISBN:958-698-103-7.

Carroll Jr, R.G, Rodencal J., Collin J.G., Geotextiles and Geo-membranes., Volume 11, Issues 4-6, 1992, pp. 523-534.

Contreras, V.M., El Control de la Erosión de Cárcavas en Olivar Mediante Mantas Orgánicas., Foro Olivar y Medio Ambiente Expoliva, 2001, 5p.

Contreras, M. V., De Sousa Borges, S.P., Nuevos materiales para el control de la erosión tras los incendios forestales., Jornadas de Incendios forestales de Serra D'ossa, Estremoz (Portugal), Enero 2007.

Cortés Lombana, A., Suelos Colombianos: una Mirada desde la academia., Fundación Universidad Jorge Tadeo Lozano, Facultad Recursos Naturales, Bogotá, 2004. ISBN: 958-9029-64-7.

Dalzell, H. W., Riddlestone, A.J., Gray, K.R., Thurairajan, K., Manejo del suelo: producción y uso del composte en ambientes tropicales y subtropicales., Organización de las Nacionales Unidas para la Agricultura y la Alimentación, Boletín de Suelos de la FAO, No. 56, 1991, p. 14.

Departamento Administrativo de Medio Ambiente. DAMA., Protocolo Distrital de restauración Ecológica., Bogotá, 2002.

FAO-PNUMA-UNESCO., Clasificación provisional para la evaluación de la degradación de los suelos, Roma, 1981.

Fassbender, H.W., Bornemisza E., Química de suelos con énfasis en suelos de América Latina ., 1987, p. 345.

Finck, A., Fertilizantes y Fertilización., Editorial Reverté S.A., 1988.

Foltz, R. B., Copeland, N.S., Evaluating the efficacy of wood shreds for mitigating erosion., Journal of Environmental Management, 90(2), 2009, pp. 779-785. DOI: 10.1016/ j.jenvman.2008.01.006

Franco, J. A., Agrarian erosion perception., Revista de la Facultad de Ciencias Agrarias, Vol. 40, Issue 2, 2008, pp. 49-60, p. 12p.

García Ruiz, J. M., López García, P., Eds., CSIC. Instituto Pirenaico de Ecología., Papeles de geografia, No. 28, Zaragoza, 1998, pp. 9-39. ISBN: 84-921 842-2-1.

Gaspari, F. J., Bruno, J. E., Diagnóstico de degradación ambiental por erosión hídrica en la cuenca del arroyo Napostá Grande., Ecol. Austral, Vol. 13, No. 1, Córdoba ene./ jun., 2003.

Hudson, N., Conservación del suelo., Editorial Reverte España, 1982.

Ibáñez, J.J, Valero Garcés, B.L., Machado, C., Implicaciones en la desertificación. Eds., Geoforma Ediciones, Logroño, 1997, pp. 27- 130. ISBN: 84-87779-30- 1.

Ibáñez, J.J., González Rebollar, J.L., García Alvarez, A., Saldaña, A., Los geosistemas mediterráneos en el espacio y en el tiempo. La evolución del paisaje mediterráneo en el espacio y en el tiempo., 1997.

Inckel, M., Smet, P., Tersmette, T., Veldkampade, T., The preparation and use of compost., Agromisa foundations Wage-ningen seventh edition, 2005.

Jorba, M., Vallejo, R., Restauración ecológica de canteras: un caso con aplicación de enmiendas orgánicas y riegos., Octubre, 2008.

Kilgore, R.T., Cotton, G., Desing of roadside channels with flexible linings hidraulic engineering., circular No. 15, third edition, 2005.

Lancaster, T., Austin, D., Calbalka, D., Suggested revisions to the flexible channel-lining design parameters., IECA Soil stabilization series, Streambank & channel stabilization, Vol. 18, 2001, pp. 1-5.

Lancaster T., Deron N. A.,. Classifying rolled erosion - control products: a current perspective., Erosion control technology council ECTC, June 2003.

Longa, P.V., Bergadob, D.T., Abuel-Nagac H.M., Geosynthetics reinforcement application for Tsunami reconstruction Evaluation of interface parameters with silty sand and weathered clay., Geotextiles and geomembranes, 25, 2007, pp. 311-323.

López Bermúdez, F., Romero Díaz, A., Erosión y desertificación: implicaciones ambientales y estrategias de investigación. Papeles de geografía, No. 28, 1998, pp. 77-89.

Malagón Castro, D., Los suelos de Colombia., Boletín de la Sociedad Geográfica de Colombia (Revista de la Academia de Ciencias Geográfica), Vol. 46, No. 135, Bogotá, Diciembre de 2002.

Ministerio de Ambiente, Vivienda y Desarrollo Territorial Guía Ambiental Terminales Portuarios., Fichas de Manejo Ambiental, p. 265. ISBN: 958973-93-3-4. Disponible en: http://es.scribd.com/doc/66580138/Guia-de-Term-in-Ales-Portuarios

Morgan, R. P., Urbano López, Meneses C.,J. Erosión y conservación del suelo., Longman group limited, 1995. ISBN: 84-7114-679-7

PAVCO., "Geotextiles"., Bogotá, 1992.

Poesena, J., Nachtergaelea, J., Verstraetena, G., Valentinb, C., Gully erosion and environmental change: importance and research needs, 2002.

Porta Casanellas, J., López, M., Acevedo R., Agenda de Campo de suelos., Información de suelos para la agricultura y el medio ambiente, Ediciones Mundi-Prensa, 2005.

Posada, P. B. O., Henao Pineda, W., Diagnóstico de la Erosión en la zona costera del Caribe Colombiano., Serie de publicaciones especiales, No.13, Santa Marta, INVEMAR, 2008, p. 200.

Preston, S., El Manejo Sustentable de Suelos., 1° Ed. ATTRA, 2007, pp. 19 - 21.

Risse, L. M, Faucette, B., California Integrated Waste Management Board., Use of compost and co-compost as a primary erosion control material, 2009.

Rivera, P. J. H., Sinisterra, R. J., Calle, D. Z., Restauración Ecológica de suelos degradados por Erosión en Cárcavas en el enclave xerofítico de Dagua, Valle del Cauca, Colombia., Área de restauración ecológica de CIPAV. Centro para la investigación en sistemas sostenibles para la producción agropecuaria (s/f). Disponible en http://www.cipav.org.co/noticias/noticias-n01.html.

Rubio, J.L., Garcia Ruiz, J.M., González -Rebollar., Programa Interáreas del CSIC sobre Desertificación en Ambientes Mediterráneos: Aspectos Físicos, Culturales, Sociales y Económicos., Instituto Pirenáico de Ecología, CSIC, Zaragoza, 1996, pp. 27.

Salamanca Solarte, B., Deterioro de ecosistemas y necesidades de investigación, Preprint, 1995.

Sánchez, E.J.G, Erosión: La importancia de la conservación del suelo., 2010. Disponible en: http://www.aeac-sv.org/pdfs/infoerosion.pdf. consulta realizada Marzo17/2010

Soto, G., Meléndez, G., Taller de Abonos Orgánicos., Marzo 2003.

Stoffella, P. J., Yuncong L., Organic waste compost utilization in vegetable crop production systems., Proceedings of the ISTH, Vol. 43, 1999, pp. 30-32, 3p. AN 31618651.

Suárez, J., Deslizamiento y estabilidad de Taludes en zonas tropicales., Instituto de Investigación sobre erosión y deslizamientos, 1998.

Thompson, L.M., Troeh Frederick, R., Los suelos y su fertilidad., Editorial Reverte, 1988.

Tisdale, S.L., Nelson, W.L., Fertilidad de los suelos y fertilizantes., México, UTEHA, 1988, 760 p.

Vega-Carreño, M. B., Febles-González, J.M., La investigación de suelos erosionados: métodos e índices de diagnóstico., Minería y Geología, Vol. 21, Issue 2, 2005, p. 1, 18p. Disponible en www.Ideam.gov.co. Consulta realizada el 8/03/2010.

Zhong-qiangwanga, B., Liang-huanwua, C., Ting-Ting L., Reve-getation of steep rocky slopes: Planting climbing vegetation species inartificially drilled holes., Ecological Engineering Volume 35, Issue 7, July 2009, pp. 1079-1084.

Zmora-Nahum, S., Markovitch, O., Tarchitzky, J., Chen, Y., Dissolved organic carbon (DOC) as a parameter of compost maturity., Soil Biology and Biochemistry, November 2005, pp. 2109-2116.

Allen, S. R, Evaluation and Standardization of Rolled Erosion Control Products, Geotextiles and Geomembranes., Volume 14, Issues 3-4, March-April 1996, pp. 207-221.        [ Links ]

Barbera, G.G., López Bermúdez, F., Romero Díaz, A., Cambios de uso del suelo y desertificación en el Mediterráneo: el caso del Sureste Ibérico., En Acción humana y desertificación en ambientes mediterráneos, 1997.        [ Links ]

Bhattacharyya, R., Fullen, M.A., Davies, K., Booth, C.A., Use of palm-mat geotextiles for rainsplash erosion control, Geomorphology., 2010. DOI: 10.1016/j.geomorph.2010.02. 018        [ Links ]

Bongcam Vásquez, E., Guía para Compostaje y manejo de suelos., Bogotá, 2003. ISBN:958-698-103-7.        [ Links ]

Carroll Jr, R.G, Rodencal J., Collin J.G., Geotextiles and Geo-membranes., Volume 11, Issues 4-6, 1992, pp. 523-534.        [ Links ]

Contreras, V.M., El Control de la Erosión de Cárcavas en Olivar Mediante Mantas Orgánicas., Foro Olivar y Medio Ambiente Expoliva, 2001, 5p.        [ Links ]

Contreras, M. V., De Sousa Borges, S.P., Nuevos materiales para el control de la erosión tras los incendios forestales., Jornadas de Incendios forestales de Serra D'ossa, Estremoz (Portugal), Enero 2007.        [ Links ]

Cortés Lombana, A., Suelos Colombianos: una Mirada desde la academia., Fundación Universidad Jorge Tadeo Lozano, Facultad Recursos Naturales, Bogotá, 2004. ISBN: 958-9029-64-7.        [ Links ]

Dalzell, H. W., Riddlestone, A.J., Gray, K.R., Thurairajan, K., Manejo del suelo: producción y uso del composte en ambientes tropicales y subtropicales., Organización de las Nacionales Unidas para la Agricultura y la Alimentación, Boletín de Suelos de la FAO, No. 56, 1991, p. 14.        [ Links ]

Departamento Administrativo de Medio Ambiente. DAMA., Protocolo Distrital de restauración Ecológica., Bogotá, 2002.        [ Links ]

FAO-PNUMA-UNESCO., Clasificación provisional para la evaluación de la degradación de los suelos, Roma, 1981.        [ Links ]

Fassbender, H.W., Bornemisza E., Química de suelos con énfasis en suelos de América Latina ., 1987, p. 345.        [ Links ]

Finck, A., Fertilizantes y Fertilización., Editorial Reverté S.A., 1988.        [ Links ]

Foltz, R. B., Copeland, N.S., Evaluating the efficacy of wood shreds for mitigating erosion., Journal of Environmental Management, 90 (2), 2009, pp. 779-785. DOI: 10.1016/ j.jenvman.2008.01.006        [ Links ]

Franco, J. A., Agrarian erosion perception., Revista de la Facultad de Ciencias Agrarias, Vol. 40, Issue 2, 2008, pp. 49-60, p. 12p.        [ Links ]

García Ruiz, J. M., López García, P., Eds., CSIC. Instituto Pirenaico de Ecología., Papeles de geografia, No. 28, Zaragoza, 1998, pp. 9-39. ISBN: 84-921 842-2-1.        [ Links ]

Gaspari, F. J., Bruno, J. E., Diagnóstico de degradación ambiental por erosión hídrica en la cuenca del arroyo Napostá Grande., Ecol. Austral, Vol. 13, No. 1, Córdoba ene./ jun., 2003.        [ Links ]

Hudson, N., Conservación del suelo., Editorial Reverte España, 1982.        [ Links ]

Ibáñez, J.J, Valero Garcés, B.L., Machado, C., Implicaciones en la desertificación. Eds., Geoforma Ediciones, Logroño, 1997, pp. 27- 130. ISBN: 84-87779-30- 1.        [ Links ]

Ibáñez, J.J., González Rebollar, J.L., García Alvarez, A., Saldaña, A., Los geosistemas mediterráneos en el espacio y en el tiempo. La evolución del paisaje mediterráneo en el espacio y en el tiempo., 1997.        [ Links ]

Inckel, M., Smet, P., Tersmette, T., Veldkampade, T., The preparation and use of compost., Agromisa foundations Wage-ningen seventh edition, 2005.        [ Links ]

Jorba, M., Vallejo, R., Restauración ecológica de canteras: un caso con aplicación de enmiendas orgánicas y riegos., Octubre, 2008.        [ Links ]

Kilgore, R.T., Cotton, G., Desing of roadside channels with flexible linings hidraulic engineering., circular No. 15, third edition, 2005.        [ Links ]

Lancaster, T., Austin, D., Calbalka, D., Suggested revisions to the flexible channel-lining design parameters., IECA Soil stabilization series, Streambank & channel stabilization, Vol. 18, 2001, pp. 1-5.        [ Links ]

Lancaster T., Deron N. A.,. Classifying rolled erosion - control products: a current perspective., Erosion control technology council ECTC, June 2003.        [ Links ]

Longa, P.V., Bergadob, D.T., Abuel-Nagac H.M., Geosynthetics reinforcement application for Tsunami reconstruction Evaluation of interface parameters with silty sand and weathered clay., Geotextiles and geomembranes, 25, 2007, pp. 311-323.        [ Links ]

López Bermúdez, F., Romero Díaz, A., Erosión y desertificación: implicaciones ambientales y estrategias de investigación. Papeles de geografía, No. 28, 1998, pp. 77-89.        [ Links ]

Malagón Castro, D., Los suelos de Colombia., Boletín de la Sociedad Geográfica de Colombia (Revista de la Academia de Ciencias Geográfica), Vol. 46, No. 135, Bogotá, Diciembre de 2002.        [ Links ]

Ministerio de Ambiente, Vivienda y Desarrollo Territorial Guía Ambiental Terminales Portuarios., Fichas de Manejo Ambiental, p. 265. ISBN: 958973-93-3-4. Disponible en: http://es.scribd.com/doc/66580138/Guia-de-Term-in-Ales-Portuarios        [ Links ]

Morgan, R. P., Urbano López, Meneses C.,J. Erosión y conservación del suelo., Longman group limited, 1995. ISBN: 84-7114-679-7        [ Links ]

PAVCO., "Geotextiles"., Bogotá, 1992.        [ Links ]

Poesena, J., Nachtergaelea, J., Verstraetena, G., Valentinb, C., Gully erosion and environmental change: importance and research needs, 2002.        [ Links ]

Porta Casanellas, J., López, M., Acevedo R., Agenda de Campo de suelos., Información de suelos para la agricultura y el medio ambiente, Ediciones Mundi-Prensa, 2005.        [ Links ]

Posada, P. B. O., Henao Pineda, W., Diagnóstico de la Erosión en la zona costera del Caribe Colombiano., Serie de publicaciones especiales, No.13, Santa Marta, INVEMAR, 2008, p. 200.        [ Links ]

Preston, S., El Manejo Sustentable de Suelos., 1° Ed. ATTRA, 2007, pp. 19 - 21.        [ Links ]

Risse, L. M, Faucette, B., California Integrated Waste Management Board., Use of compost and co-compost as a primary erosion control material, 2009.        [ Links ]

Rivera, P. J. H., Sinisterra, R. J., Calle, D. Z., Restauración Ecológica de suelos degradados por Erosión en Cárcavas en el enclave xerofítico de Dagua, Valle del Cauca, Colombia., Área de restauración ecológica de CIPAV. Centro para la investigación en sistemas sostenibles para la producción agropecuaria (s/f). Disponible en http://www.cipav.org.co/noticias/noticias-n01.html.        [ Links ]

Rubio, J.L., Garcia Ruiz, J.M., González -Rebollar., Programa Interáreas del CSIC sobre Desertificación en Ambientes Mediterráneos: Aspectos Físicos, Culturales, Sociales y Económicos., Instituto Pirenáico de Ecología, CSIC, Zaragoza, 1996, pp. 27.        [ Links ]

Salamanca Solarte, B., Deterioro de ecosistemas y necesidades de investigación, Preprint, 1995.        [ Links ]

Sánchez, E.J.G, Erosión: La importancia de la conservación del suelo., 2010. Disponible en: http://www.aeac-sv.org/pdfs/infoerosion.pdf. consulta realizada Marzo17/2010        [ Links ]

Soto, G., Meléndez, G., Taller de Abonos Orgánicos., Marzo 2003.        [ Links ]

Stoffella, P. J., Yuncong L., Organic waste compost utilization in vegetable crop production systems., Proceedings of the ISTH, Vol. 43, 1999, pp. 30-32, 3p. AN 31618651.        [ Links ]

Suárez, J., Deslizamiento y estabilidad de Taludes en zonas tropicales., Instituto de Investigación sobre erosión y deslizamientos, 1998.        [ Links ]

Thompson, L.M., Troeh Frederick, R., Los suelos y su fertilidad., Editorial Reverte, 1988.        [ Links ]

Tisdale, S.L., Nelson, W.L., Fertilidad de los suelos y fertilizantes., México, UTEHA, 1988, 760 p.        [ Links ]

Vega-Carreño, M. B., Febles-González, J.M., La investigación de suelos erosionados: métodos e índices de diagnóstico., Minería y Geología, Vol. 21, Issue 2, 2005, p. 1, 18p. Disponible en www.Ideam.gov.co. Consulta realizada el 8/03/2010.        [ Links ]

Zhong-qiangwanga, B., Liang-huanwua, C., Ting-Ting L., Reve-getation of steep rocky slopes: Planting climbing vegetation species inartificially drilled holes., Ecological Engineering Volume 35, Issue 7, July 2009, pp. 1079-1084.        [ Links ]

Zmora-Nahum, S., Markovitch, O., Tarchitzky, J., Chen, Y., Dissolved organic carbon (DOC) as a parameter of compost maturity., Soil Biology and Biochemistry, November 2005, pp. 2109-2116.        [ Links ]

Creative Commons License Todo o conteúdo deste periódico, exceto onde está identificado, está licenciado sob uma Licença Creative Commons