SciELO - Scientific Electronic Library Online

 
vol.23 número1Interpreting redox processes in acid sulphate soils in the upper Chicamocha river basin, Boyaca¹Studying the humidity of three types of peat during the propagation stage of basil (Ocimum basilicum L.) índice de autoresíndice de assuntospesquisa de artigos
Home Pagelista alfabética de periódicos  

Serviços Personalizados

Journal

Artigo

Indicadores

Links relacionados

  • Em processo de indexaçãoCitado por Google
  • Não possue artigos similaresSimilares em SciELO
  • Em processo de indexaçãoSimilares em Google

Compartilhar


Agronomía Colombiana

versão impressa ISSN 0120-9965

Agron. colomb. v.23 n.1 Bogotá jan./jul. 2005

 

La calidad de suelos de ladera a partir del conocimiento de agricultores de Caldono en el suroeste de Colombia

Farmers' local knowledge regarding the quality of hillside soil in Caldono, southeastern Colombia

Carmen Patricia Cerón11y Yilton Riascos2

1Profesora Departamento de Ciencias Sociales, Universidad de NariÑo, Pasto. e-mail: patriciaceron@coomevamail.com
2Profesor Departamento de Matemáticas, Universidad del Cauca, Popayán

Fecha de recepción: 20 de octubre de 2004 Aceptado para publicación: 27 de mayo de 2005.


Resumen

El propósito de este estudio fue conocer la calidad de Inceptisoles en paisajes de ladera mediante la interrelación entre el conocimiento empírico de las tierras por parte de los agricultores locales y las propiedades fisicoquímicas del suelo. Los agricultores de la microcuenca Potrerillo, municipio de Caldono (Cauca, Colombia) diferenciaron tres categorías culturales: 'tierra brava', 'tierra cansada' y 'tierra buena'. Por otra parte, se tomaron muestras de suelo a una profundidad entre 0 y 20 cm en esas tres fracciones culturales y bajo dos usos: café con sombrío y bosque, con cuatro réplicas para un total de l6 muestras. Se evaluó color, porcentaje de arcillas, tamaño y estabilidad de los agregados, nitrógeno mineral (N-NO3 + N-NH4), carbono total, fraccionamiento de materia orgánica, pH, fósforo disponible y cationes intercambiables (K, Ca, Mg, Al). Los datos se procesaron estadísticamente usando análisis de varianza, prueba Duncan, correlaciones y análisis de componentes principales. Se encontró que los agricultores consideraron como 'tierra buena' aquella que presentaba las mejores condiciones del horizonte superficial, expresadas en una mayor densidad de miriápodos, colores pardos oscuros y mayores contenidos de N mineral, C total y fracción liviana de materia orgánica. Las tierras de menor calidad presentaban cambio de colores, disminución en el contenido de las anteriores variables y deterioro de los agregados.

Palabras clave adicionales: Conocimiento local de tierras, Inceptisoles, 'tierra brava', 'tierra cansada' y 'tierra buena'.


Abstract

This study was aimed at exploring the quality of Inceptisol in hilly areas by relating local soil knowledge to soil properties. This study was carried out with farmers from the Potrerillo micro-watershed, Caldono, Colombia, who identified 3 cultural categories regarding soil known as being 'angry land', 'tired land' or 'good land'. Soil samples were taken in 'angry land', 'tired land' and 'good land' having two uses: shaded coffee and woods. Experiments were repeated four times to give a total of 16 samples (0-20 cm depth). The following aspects were evaluated: colour, clay, size and aggregate stability, mineral nitrogen (N-NO3 + N-NH4), total carbon, organic matter, pH, available phosphorous and exchangeable cations (K, Ca, Mg, Al). Variance analysis, Duncan's test, correlation and main component analysis were used for statistically processing the data. It was found that farmers considered 'good land' to be that having better surface horizon conditions. Such 'good land' was characterised by having a high density of myriapoda, dark brown colours and a greater amount of mineral N, total C and light fraction soil organic matter. Inferior quality soil presented changes in colour, a decrease in the previous variables and aggregate deterioration.

Additional key words: Local soil knowledge, Inceptisols, 'angry soil', 'tired soil' and 'good soil'.


Introducción

LA CALIDAD DEL SUELO se define como función de su capacidad para producir cultivos seguros y nutritivos de manera sostenible a largo plazo, promoviendo la salud humana y la biodiversidad, sin impactar los recursos naturales o contaminar el ambiente (Parr et al., 1992). La estimación de la calidad se asocia con el uso de parámetros sensibles y dinámicos que permitan documentar su condición.

Para valorar la calidad del suelo se han generado metodologías cuantitativas y cualitativas: las primeras son más utilizadas por los académicos mientras las segundas se asocian por lo general con los agricultores. En este documento se asume que estas herramientas son complementarias y que el conocimiento acerca de los suelos tropicales se construye a partir de dos actores sociales: académicos y agricultores; así mismo, se reconoce que el diálogo entre las diversas maneras de conocer y de ser logra una mejor comprensión del entorno así como una visión integral para enfrentar los problemas sociales y ambientales.

Las investigaciones en el tema muestran que la comunicación entre saberes distintos no consiste en el traspaso directo de un conocimiento a otro. Se requiere una comprensión del carácter social, cultural e histórico que incide en una construcción diferente entre las formas del conocer. Por su parte, los académicos se ubican en una relación teórica con el mundo y por ello se valen de evaluaciones de las propiedades físicas, químicas y biológicas en campo y laboratorio asociadas con modelos conceptuales de las ciencias del suelo. Por otra parte, los agricultores se basan en una relación empírica con el entorno mediada por su cosmovisión, su experiencia con los suelos que trabajan cotidianamente y de acuerdo con unas condiciones particulares en las que elaboran y le son posibles ciertas formas de concepción, clasificación, uso y manejo del suelo.

En este contexto, este estudio se plantea como objetivo caracterizar la calidad de Inceptisoles de ladera mediante la interrelación entre categorías de percepción cultural sobre las tierras construidas por los agricultores de la microcuenca Potrerillo, en el municipio de Caldono (Cauca, Colombia), y las propiedades físicas, químicas y biológicas del suelo. Dicha interrelación se aborda a través de metodologías cualitativas propias de la antropología y de los métodos cuantitativos de las ciencias del suelo. Por tanto, se trabaja el conocimiento de los productores desde la etnografía, lo que hace posible un acercamiento que tiene en cuenta las perspectivas y prácticas sociales de los pobladores, para luego identificar la correspondencia conceptual con el conocimiento académico, a través de la información derivada de las propiedades del suelo. Los resultados sugieren que el conocimiento de las tierras por parte de los agricultores se basa en un saber cultural sobre la dinámica de la materia orgánica en ellas. Por consiguiente, se plantea como hipótesis que, para diferenciar la calidad de los suelos de las tierras 'brava', 'cansada' y 'buena', es pertinente tener en cuenta y relacionar variables como color, carbono total y nitrógeno mineral.

Materiales y métodos

Se trabajó con agricultores que habitan la microcuenca Potrerillo, municipio de Caldono en el departamento del Cauca, ubicado en el suroeste de Colombia, en la vertiente occidental de la Cordillera Central, entre las coordenadas 2°48' y 2°49' de latitud norte, y 76°32' y 76°33' de longitud oeste.

La zona comprende alturas entre 1.411 y 1.564 m.s.n.m., temperaturas entre 17 y 24 °C, y una precipitación promedio anual de 1.982 mm. Los suelos están parcialmente afectados por cenizas volcánicas y se clasifican como Oxic Dystropepts (IGAC, 1976). En una investigación realizada en Inceptisoles de la región se encontró que presentaban buena infiltrabilidad y alto grado de agregación (Ruppenthal, 1995); respecto de las propiedades químicas hay tendencia marcada a la acidez y a ser pobres en nutrientes, principalmente en bases de intercambio y fósforo; además muestran amplia variabilidad espacial (Buitrago, 1995).

Para lograr el acercamiento al conocimiento local, se recorría con el agricultor la unidad de producción, al tiempo que se dialogaba sobre la diferenciación de tierras, la historia de uso y las prácticas de manejo. Los agricultores usan la denominación 'tierra' como sinónimo de suelo y establecen asociaciones con la ubicación y la biota asociada. A partir del conocimiento de los pobladores se determinaron tres categorías culturales para diferenciar las tierras: 'brava', 'cansada' y 'buena'. Se tomaron 16 muestras de suelo, a una profundidad entre 0 y 20 cm, en suelos de ladera con pendientes = 20%, en la temporada seca del mes de julio, con cuatro (4) réplicas por cada categoría: 'brava' (T1), 'cansada' (T2) y 'buena', y bajo dos usos: bosque (T3) y café con sombrío (T4).

Las muestras de T1 se tomaron de lotes con barbecho natural; las de T2, de lotes con barbecho natural que estaban antecedidos por 2 o 3 cosechas de yuca durante las cuales habían sido arados y recibido fertilización, generalmente gallinaza (250 g/planta) y calfos; las muestras de suelo procedentes de T3 tenían como uso el bosque secundario y las de T4, café (Coffea arabica) con sombrío de árboles maderables y frutales, en especial guamo (Inga sp.). Al igual que T1, los lotes de T3 y T4 no habían recibido fertilización ni plaguicidas.

Las muestras fueron analizadas en el laboratorio de suelos del Centro Internacional de Agricultura Tropical (CIAT) en lo concerniente a textura (dispersión sónica e hidrómetro), estabilización de agregados (tamizado en húmedo), tamaño de agregados (separación en tamices de 6,3, 2,1, 0,5, 0,25 y 0,125 mm), color (según la tabla Munsell cuyos datos se convirtieron a valores numéricos a partir de la fórmula propuesta por Thompson y Bell, 1996), pH en KCl (1:1), K (Bray II), Ca y Mg (NaOH 0,05M), Al (volumetría, KCl 1N), P disponible (Bray II), C total (según protocolo de Walkey-Black, oxidación con dicromato de potasio y ácido sulfúrico), N mineral (extracción con KCl 1M y determinación de nitrato y amonio) y fraccionamiento de materia orgánica (tamaño y densidad, según lo descrito por Barrios et al., 1996), para obtener la fracción liviana referenciada como LL (>150 µm, <1,13 g. cm–3 en solución ludox), la fracción media representada como LM (>150 µm, 1,13-1,37 g. cm–3) y la fracción pesada, LH (>150 µm, >1,37 g. cm–3).

La información de las variables físicas, químicas y materia orgánica está registrada en Cerón (2001). Adicionalmente, se tomaron datos sobre macroinvertebrados del trabajo de Sevilla (2002) quien trabajó en la misma zona ocho meses después, con cinco réplicas de cada tierra, cuatro de las cuales correspondían a los mismos sitios de este estudio; finalmente, se introdujeron los datos de hojarasca y profundidades 1-10 cm y 10-20 cm.

Los datos se procesaron estadísticamente con el programa SAS®, mediante análisis de varianza (ANOVA) con prueba de medias de Duncan, correlación de Pearson y análisis de componentes principales. Para este último análisis se usaron las siguientes variables: color, porcentaje de arcilla, tamaño de agregados 2,0-6,3 mm y 0,12-0,25 mm, estabilidad de agregados, N mineral, C total, fracción liviana LL, pH, K, Ca y Al.

Resultados y discusión

Conocimiento de los agricultores sobre las tierras

Los agricultores de la zona en su mayoría son campesinos e indígenas. Siembran cultivos perennes y transitorios, dinámica influida por el café que es la planta que más se cultiva y ocupa mayor cantidad de tierra. Como se mencionó, los suelos estudiados se localizan en zona de ladera, denomindad como 'loma' o 'falda' por el agricultor. La calidad de los suelos o 'tierras', como ellos les llaman, se diferencia empíricamente a partir de criterios culturales relacionados con el uso y el manejo, las características físicas del suelo y la biota asociada; con ello establecen tres categorías, a saber: 'tierra brava', 'tierra cansada' y 'tierra buena'.

Tierra brava. En los espacios cultivados, la denominación 'tierra brava' hace referencia al suelo donde se dificulta el crecimiento y la producción de las plantas; atendiendo al manejo, es la tierra que requiere mayor fertilización así como mayor esfuerzo físico en su laboreo. En los espacios no cultivados, corresponde a los suelos cuyo horizonte superficial es de color 'rojo' o 'amarillo', mientras la tierra presenta una textura 'ceruda', lo que, según los productores, se debe a que retiene más humedad. En el periodo seco la 'tierra brava' toma una consistencia dura mientras que en las lluvias se convierte en barro debido a su mayor adherencia a la mano y las herramientas y por su plasticidad, como se evidencia en la siguiente narración de un agricultor:

"'Ceruda' es cuando se vuelve una masa, uno aprieta la tierra así [con la mano] y puede hacer hasta una bola, o uno la moja y sirve es para hacer un ladrillo, mientras la arenosa usted no la puede hacer, se desmorona toda" (Reinel Rivera). Es esta fracción crecen plantas silvestres como helechillo (Dichranopteris flexuosa), paja garrapatera (Paspalum pilosum), chifladera (Epidendrum ibaguense), chusco (Sobralia sp.), caracucho (Bejaria glauca), paja (Andropogon leucostachyus), paja (Andropogon bicornis), paja de cerro (gramínea sin identificar), chilco de loma (Clidemia sp.), cole mula (Digitaria insularis), chondur de loma (Sisyrinchium bogotense) y centaura (Eupatorium amygdalinum). Algunas de estas plantas son utilizadas por la población; por ejemplo, la paja garrapatera se mezcla con barro en la construcción de viviendas, de las hojas de chifladera se fabrican pitos para que jueguen los niÑos, el caracucho se usa contra cucarachas, el chondur de loma es medicinal y la centaura es usada contra enfermedades del ganado.

Los productores opinan que la tierra brava se recupera mediante arado para aflojar la tierra, la fertilización, especialmente con gallinaza, y la descomposición de la materia orgánica obtenida por residuos de cosecha y deshierba. Atribuyen a la gallinaza una mayor producción y diversidad de arvenses y el cambio de color de la tierra:

"Es cuando sembramos una mata y no te produce nada, por el color de la tierra que es tierra colorada. La gallinaza compone el suelo porque después de dos a tres cultivos usted ya puede sembrar un cultivo de maíz que ya le da sin tener que abonar, la gallinaza ya va arreglando el suelo y le va cambiando el color al suelo también" (Gerardo Jiménez). Por esta razón, en la 'tierra brava' los agricultores siembran (o arriendan para sembrar) un cultivo de ciclo corto destinado al mercado, como el tomate, el cual se prefiere cultivar en ladera y con una inversión de recursos económicos en arado y gallinaza, lo que consideran, inicia la recuperación de la tierra. El tomate recibe abundante fertilización, pues al momento de la siembra se usa gallinaza, que a veces se mezcla con cal, y después se reabona una o dos veces con fertilizante compuesto:

"El tomate [mejora el suelo] porque hay que aplicar más orgánico como gallinaza [...], porque después del tomate yo comencé a ver que habían malezas como la pakunga, y el color del suelo también [había cambiado] y las malezas que nacen, nacen bien verdes y bonitas, entonces yo vi que la tierra estaba buena para meter plátano" (Carlos Trujillo). Tierra cansada. Los productores asocian la 'tierra cansada' con la disminución en la producción agrícola, el aumento de enfermedades e insectos, la reducción del espesor de la capa arable, el menor tamaño de los agregados y el cambio de color del suelo.

Mencionan como causas de la 'tierra cansada' el trabajo contínuo -en especial el monocultivo con productos de ciclo corto-, el uso excesivo de fertilizantes -principalmente los de síntesis química-, y el uso constante del arado en la preparación del terreno de ladera, implemento que revuelve la tierra y la expone al sol y al agua, con lo cual se seca o es arrastrada a la parte baja de la colina por la lluvia:

"Antes la tierra no necesitaba abono porque no estaba tan trabajada; no ve que ahora pelan una loma, van y le meten esos bueyes, aran y eso queda la tierra que eso llueve y toda esa tierra se va llevando el alimento, se lo va llevando el agua, el alimento queda por allá en los zanjones, en los ríos. Le echan una cantidad de abono, sacan esa cosecha, al otro año vuelven y le meten otra vez esos bueyes y eso va quedando es la roca pelada y eso vuelven y aran y sacan otro pedazo de tierra de más abajo y eso vienen otra vez las lluvias y barren con todo, otra vez. Por eso, es que la tierra va quedando tan pobre, que ya no tiene nada de alimento para las matas" (Blanca Delgado).

La 'tierra cansada' presenta como características su color 'café' o de 'tierra revuelta', ser 'tierra seca' o 'tierra polvosa', y la pérdida del espesor de la capa arable. La 'tierra polvosa' es la que no forma grano; una manera como los productores diferencian la 'tierra granosa' de la 'polvosa' consiste en tomar suelo con la mano y dejarlo caer: si es 'granosa' cae verticalmente porque es pesada, pero si es 'polvosa' es arrastrada por el viento, por lo cual en su caída toma una dirección oblicua.

En lo que corresponde a la biota asociada, en la 'tierra cansada' disminuye la producción de los cultivos mientras que algunas arvenses toleran mejor esta condición. También ha identificado que ocurre un aumento de enfermedades e insectos plaga, en especial, mencionan la abundancia de larvas de la familia Melolonthidae (Coleoptera) en el cultivo de yuca: "Uno sabe que la tierra está cansada en enfermedades, si se agarra y métale y métale cultivos, va a llegar un tiempo en que la tierra así métale el abono que le meta ya no le va a producir, ya se llena de gota o chamusquina o tanta cosa que le cae, entonces ya es seÑa de que la tierra ya está cansada, tiene que dejar enmalezar siquiera unos dos años que la tierra ajuste" (Alberto Rivera).

Cuando la tierra está 'muy cansada' los agricultores optan por 'dejarla descansar', lo que consiste en no dedicar a actividades agropecuarias para crezca el barbecho natural. La recuperación se atribuye al aumento de materia orgánica y a las raíces de las plantas que vuelven reversible la característica 'polvosa': "Una tierra está cansada porque lleva varias siembras de yuca. Cuando la tierra está cansada hay que dejarla como cinco años. Es polvosa por tanto trabajarla pero con el monte queda firme, está apretada otra vez, la raíz del monte aprieta la tierra" (Tranquilino Mosquera).

Los agricultores conocen la 'tierra descansada' por la edad del barbecho. Si bien consideran que el período adecuado para el descanso es igual o mayor de cinco años, es frecuente que el barbecho sólo se deje dos o tres años por necesidad de volver a utilizar ese terreno. Además, expresan que recuperar la tierra cansada es más costoso que la tierra brava, pues esta última se recupera a través del arado y la fertilización con gallinaza, mientras que la tierra cansada, aunque se fertilice, no mejora la producción y se debe usar mayor cantidad de fertilizante y plaguicidas:

"La tierra [cansada] se recupera pero cuesta muchísimo, la tierra cansada usted tiene que meterle una cantidad de abonos, de plaguicidas, porque hay mucha plagas por haber habido tantos cultivos, por haber sido tan trajinada, entonces va a ser más duro recuperar esa tierra que esté así cansada que una tierra como la de loma [brava], esa tierra uno muele, se le echa los abonos y no tan rápido pero es más fácil de recuperar que la tierra cansada" (Reinel Rivera).

Tierra buena. La tierra considerada como 'buena' se relaciona con aquellos suelos con vegetación arbórea, los cuales presentan necesidades de fertilización menores, son de fácil laboreo y presentan características físicas que resultan en mejores condiciones del horizonte superficial o capa arable.

Teniendo en cuenta las formas de uso, la 'tierra buena' incluye los cultivos de café con sombrío y las zonas boscosas, que se consideran de calidad similar puesto que son poco trabajadas en labores agropecuarias, que en opinión de los agricultores locales 'cansan la tierra':

"Tierra buena en los montes espesos, esos no han sido sembrados ni rozados; porque no la han trabajado hay monte espeso, cascarillo, cucharo. Las cafeteras se parecen a la del monte por la humedad y la hojarasca de las hojas, en las cafeteras vieja" (Luis Cifuentes).

El área forestal está constituida por guadua y bosque secundario. En el caso de los cultivos de café, predominan las variedades caturra y típica; los cultivos sembrados en los últimos años suelen tener como sombrío la papaya o el plátano, tendencia que va en aumento ya que esos productos también pueden destinarse al mercado. El café más antiguo presenta un arreglo espacial de policultivo en el cual están dispuestos, en forma irregular, el plátano y diferentes especies forestales y frutales, en especial guamo.

En lo que atañe al manejo, la tierra 'buena' es aquella que requiere menos fertilización; se la califica de 'blanda' o 'floja' cuando se facilita la ejecución de las labores de preparación del terreno y desyerba; se considera 'blanda' la tierra con mayores contenidos de materia orgánica:

"Esta tierra es buena porque cuando se siembra una mata pues da. Es más floja, la tierra es blanda que hasta me gusta desyerbarla, esa tierra es buena para sembrar, se le echa un poquito de gallinaza y da buen maíz, la tierra floja es buena. Es buena donde la tierra sea negra que es floja, es más fácil de sembrar porque le echa un poquito de abono y ya produce la mata" (María Méndez).

En lo concerniente a las características físicas, una tierra se percibe como 'buena' cuando tiene un mayor espesor en la capa arable, es 'negra', de textura 'granosa' (lo cual se refiere a un mayor tamaño de los agregados) y contiene una cantidad de humedad adecuada.

Con relación a la vegetación predominante los agricultores asocian la 'tierra buena' con una coloración intensa y mayor grado de crecimiento, vigor y producción de las plantas cultivadas y silvestres. En los terrenos cultivados se menciona con frecuencia la pakunga (Bidens pilosa) y gran diversidad y crecimiento de arvenses, entre ellas verbena negra (Stachytarpheta cayennensis), cabello de ángel (Emilia sonchifolia), hierba de chivo (Ageratum conyzoides), botoncillo (Stemmatella sodiroi), yantén (Plantago lanceolata), cadillo (Triumfetta mollissima), escoba (Sida rhombifolia) y conejo (Oplismenus burmannii). Consideran que hay plantas que ayudan a mantener la humedad de la huerta como ortiga (Urera baccifera), flor ardiente (Impatiens balsamina), nacedero (Trichanthera gigantea), cachimbo (Erythrina sp.) y guamo (Inga sp.).

En cuanto a la presencia de invertebrados, los agricultores mencionan que en la 'tierra buena' hay 'más animalitos' que en la 'tierra brava'. Se relaciona a la lombriz con la 'tierra húmeda' y algunos agricultores asociaron con la tierra buena a ciertos coleópteros y a los miriápodos.

Propiedades físicas y químicas de los suelos

Los agricultores también usan el color como criterio para identificar la calidad de los suelos. Expresan que la 'tierra brava' es 'colorada' o 'amarilla' lo que corresponde a rojo amarillento (5YR5/6) y amarillo rojizo (5YR6/6); la 'tierra cansada' es 'café' o 'tierra revuelta', que es pardo amarillento (10YR5/4); la 'tierra buena' es 'negra', lo que hace referencia a los colores pardo oscuro (10YR3/3), pardo grisáceo muy oscuro (10YR3/2) y pardo amarillento oscuro (10YR4/4).

El análisis cuantitativo del color muestra diferencias estadísticamente significativas (P = 0,01) entre los valores promedio de las tierras, donde T1 se diferencia de T2 y éstas de T3 y T4, lo que concuerda con la percepción cultural (tab. 1). El color del suelo está influido por la dinámica de la materia orgánica: los colores claros correlacionaron con la presencia de arcilla (r = 0,61), mientras los oscuros, con C (r = 0,87), N (r = 0,74), fracción LL (r = 0,71), humedad del suelo (r = 0,84), estabilidad de agregados (r = 0,73), densidad de lombriz (r = 0,70), biomasa de lombriz (r = 0,52) y densidad de miriápodos (r = 0,71).

A la 'tierra brava' se le atribuye ser 'ceruda'. T1 tiene una alta proporción de arcillas (67%), con diferencias estadísticamente significativas (P = 0,01) en comparación con las demás tierras, lo cual permite inferir que la 'tierra ceruda', se relaciona con esta característica (tab. 1).

En términos de la estabilidad de los agregados en agua, el comportamiento estimado a través del diámetro medio ponderado (DMP) muestra a T1 como el suelo de menor estabilidad, pues presenta diferencias estadísticamente significativas (P = 0,01). Se destaca la influencia de la materia orgánica en esta propiedad ya que presenta correlación negativa con la arcilla (r = -0,78) y positiva con colores oscuros (r = 0,73), C (r = 0,71), N (r = 0,56), humedad del suelo (r = 0,55), densidad de lombriz (r = 0,53), densidad de coleópteros (r = 0,61) y densidad de miriápodos (r = 0,53) (tab. 1).

Un indicador cultural de la tierra cansada es la 'tierra polvosa'. En la estimación del tamaño de agregados se observa que T2 muestra mayor porcentaje de agregados de menor tamaño, con diferencias estadísticamente significativas con relación a los diámetros de los agregados: (P = 0,05) para 0,25 mm y (P = 0,01) para 0,125 mm (tab. 1). Dado que T2 tiene un porcentaje menor de agregados grandes y mayor de agregados pequeÑos, se puede inferir la pérdida de estructura en la 'tierra cansada' y, a su vez, que la 'tierra polvosa' corresponde a los agregados de menor tamaño.

Los agricultores manifiestan que la 'tierra buena' es húmeda, la 'tierra cansada' es seca y la 'tierra brava' toma una consistencia dura en temporada seca y se convierte en barro durante las lluvias. Escobar (2003) realizó una medición de humedad del suelo en el área de estudio; en el mes de julio, los resultados expresaron diferencias estadísticas significativas (P = 0,01) entre la 'tierra buena' frente a las de menor calidad (tab. 1).

La estimación de las propiedades físicas de los suelos permitió establecer correspondencia conceptual con el conocimiento local. El análisis cuantitativo del color diferencia las tres categorías culturales de tierras de los agricultores. La 'tierra brava' presentó mayor contenido de arcillas y menor estabilidad de agregados. La 'tierra cansada' se asocia con mayor porcentaje de agregados pequeños a partir de 0,25 mm de diámetro. La humedad del suelo es mayor en la 'tierra buena' en comparación con las tierras de menor calidad.

Los agricultores relacionan la 'tierra buena' con las mejores condiciones de la capa arable. Evidentemente, se constató que los contenidos de C total, N mineral (N-NO3 + N-NH4) y fracción LL son más altos en la 'tierra buena' con diferencias estadísticamente significativas (P = 0,01) frente a las tierras 'brava' y 'cansada' (tab. 2).

El C total presenta menor contenido en T1, seguido de T2 y es similar en T3 y T4. El N mineral es similar en las tierras de menor calidad y es más alto en T4 con diferencias estadísticamente significativas (P = 0,01) de otras tierras, incluso T3. Posiblemente el mayor contenido de N en el cafetal se debe a la presencia de leguminosas como el guamo.

La proporción de materia orgánica tiende a ser más alta en la fracción liviana (LL), seguida de las fracciones media (LM) y la pesada (LH), así: LL > LM > LH; ello representa entre 77 y 92% de la suma de las fracciones. Esta tendencia también fue registrada en suelos de la zona durante un estudio sobre barbechos mejorados (Phiri et al., 2001), aunque difiere de la encontrada por Barrios et al. (1996) en Kenya, áfrica, en un suelo Kandic Rhodustalfs en donde la tendencia de la materia orgánica fue LH > LL > LM.

La fracción LL se acerca al criterio de calidad de acuerdo con los agricultores, dado que los contenidos son más bajos en las tierras consideradas de menor calidad en relación con T3 y T4. La fracción LM es más alta en T3 con diferencias estadísticas significativas (P = 0,05) frente a tierras de menor calidad. En el caso de la fracción LH, los contenidos no varían estadísticamente, en los suelos estudiados (tab. 2).

En lo concerniente a las propiedades químicas, no se constató una distribución acorde con el criterio cultural debido a que la 'tierra cansada' presentó las mejores condiciones y la 'tierra brava' y el bosque mostraron contenidos similares. Se presentaron diferencias estadísticamente significativas (P = 0,01) en pH, K, Ca y Al. En contraste no se demostraron diferencias estadísticas a P = 0,05 en P y Mg (tab. 3).

El pH es más alto en T2, posiblemente por influencia de la fertilización que incluyó calfos. En efecto, el pH correlacionó con Ca (r = 0,92), K (r = 0,69), Mg (r = 0,65), agregados de menor tamaño (r = 0,79) y biomasa de coleópteros (r = 0,56), mientras que correlacionó negativamente con porcentaje de arcillas (r = -0,70), Al (r = -0,90) y agregados de mayor tamaño (r = -0,73), característicos de la 'tierra cansada'.

Los contenidos de potasio más altos se hallaron en T2 y T4 con diferencias estadísticamente significativas de T1 y T3. En T2 se presentó el mayor contenido de calcio y el más bajo de aluminio, con diferencias estadísticamente significativas en comparación con las otras tierras.

En síntesis, las propiedades químicas parecen estar influidas por la fertilización que, a través del tiempo, los agricultores aplicaron en la 'tierra cansada'. Por esta razón, T2 presentó condiciones favorables expresadas en mejores valores de pH, Ca y Al. Igualmente, el nivel de K es de los más altos aunque no se diferenció estadísticamente de T4. En lo que atañe a la presencia de macroinvertebrados del suelo, en la 'tierra brava' se observó una marcada reducción, mientras que hubo diferencias estadísticas en densidad de lombriz y miriápodos en comparación con los dos usos de 'tierra buena'; así mismo, en cuanto coleópteros, hormigas y arañas en relación con el bosque (tab. 4).

La 'tierra cansada' se asocia con el aumento de enfermedades e insectos plaga. Se encontró que en este suelo habita una densidad intermedia de lombrices, hormigas y arañas, mientras que disminuye la de miriápodos en comparación con la 'tierra buena'. Los coleópteros presentaron una mayor biomasa con diferencias estadísticas (P = 0,05) frente a T1 y T4. La densidad y la biomasa resultaron similares a los valores hallados en el bosque, aunque es probable una diferencia en la complejidad estructural, si se atiende a Sevilla (2002) quien plantea que en el bosque hay especies depredadoras (Carabidae, Staphylinidae, Elateroidea y Tenebrionoidea) y mayor complejidad en gremios de lombrices y artrópodos (hormigas y coleópteros) en comparación con los barbechos de 'suelo cansado'.

Se esperaba que en T2 las larvas rizófagas de la familia Melolonthidae afectaran negativamente la producción, como lo señalaron los productores; en este sentido, Pardo (2003) estimó que en cultivos de yuca de la región se pueden presentar hasta 160.000 larvas/ha, lo que podría desencadenar un problema fitosanitario dependiendo de la proporción de larvas con hábitos rizófagos; en esta región se ha estimado que las pérdidas en los cultivos de yuca por esta causa alcanzan un 23%. Este mismo autor no encontró diferencias estadísticas significativas en la abundancia de larvas entre cultivos de yuca y bosque, aunque sí con referencia al café con sombrío. Vale decir que la densidad y la biomasa de coleópteros correlacionan con algunas variables asociadas con la 'tierra cansada'. Por una parte, la densidad correlaciona negativamente con el tamaño de los agregados grandes (r = -0,55) y positivamente con el tamaño de los agregados pequeños entre 0,25 y 0,125 mm (r = 0,56). Por otra parte, la biomasa correlaciona con pH (r = 0,56), P (r = 0,80), Ca (r = 0,64) y Mg (r = 0,53).

En la 'tierra buena' se encontró una mayor densidad de miriápodos que son los macroinvertebrados que más se ajustan al criterio cultural de los agricultores; en efecto, su población disminuyó en las tierras de menor calidad con diferencias estadísticamente significativas (P = 0,01) de la 'tierra buena'; a su vez hay mayor número de miriápodos en T3 con relación a T4. Las lombrices, los miriápodos y las arañas correlacionan entre sí y con variables asociadas con la materia orgánica. Los miriápodos correlacionan con C (r = 0,77), fracción LL (r = 0,53), fracción LM (r = 0,72), estabilidad de agregados (r = 3), colores oscuros (r = 0,71), humedad del suelo (r = 0,79), densidad de lombriz (r = 0,62) y densidad de arañas (r = 0,75). Por su parte, la densidad de lombriz correlaciona con C (r = 0,58), fracción LL (r = 0,59), color oscuro (r = 0,70), estabilidad de agregados (r = 0,53) y humedad del suelo (r = 0,59); la biomasa de lombriz correlaciona con N (r = 0,52), fracción LL (r = 0,68) y color oscuro (r = 0,52). Las arañas correlacionaron con la fracción LM (r = 0,52).

La calidad de los suelos a partir de las 'tierras'

Los suelos de 'tierra brava' carecen de un horizonte superficial claramente diferenciado; muestran colores rojo amarillento o amarillo rojizo, mayor proporción de arcillas, agregados muy inestables al agua y disminución de los contenidos de C total, con diferencias estadísticas frente a las demás tierras. Decrece el N mineral, la fracción LL y la fracción LM en forma similar a 'tierra cansada'. En cuanto a las propiedades químicas, la 'tierra brava' presenta los niveles más bajos de pH, menores contenidos de K y alto contenido de Al, diferenciándose estadísticamente de la 'tierra cansada' y el cafetal, aunque con promedios similares al bosque. Disminuye la densidad de macroinvertebrados, lombrices y miriápodos en comparación con la 'tierra buena'; también se redujeron coleópteros, hormigas y araÑas en relación con el bosque. La vegetación está compuesta por arvenses silvestres, algunas de las cuales son usadas como juguete, medicina, insecticida y material para la vivienda. Los agricultores recuperan estos suelos a partir de uso del arado, la fertilización con gallinaza y la descomposición de la materia orgánica. Se puede deducir que esta tierra se puede asociar con procesos fuertes de erosión del suelo, es decir, con la pérdida de la capa arable por el impacto de los agentes causantes, principalmente el agua (tabla 5).

Los suelos de la 'tierra cansada' se caracterizan por un color pardo amarillento, mayor proporción de agregados pequeños a partir de 0,25 mm y disminución de C total, con diferencias estadísticas de las otras tierras; decrecen así mismo los contenidos de N mineral, fracción LL y fracción LM, de manera similar a la 'tierra brava'. La 'tierra cansada' presenta propiedades químicas favorables con niveles más altos de pH y mejores contenidos de Ca y Al, con diferencias estadísticas de otras tierras; el K es similar al cafetal. Disminuyen los miriápodos en comparación con la 'tierra buena', siendo habitada por coleópteros rizófagos y una cantidad intermedia de lombrices de tierra, hormigas y arañas. Fue evidente que el uso y manejo de este tipo de tierra, con cultivos anuales y ubicación en ladera, disminuye la calidad de los suelos, ante lo cual los agricultores responden con insumos externos. Este manejo a través del tiempo influye en el aumento del pH y de algunas bases, así como en la reducción del Al intercambiable. Pese a que la evaluación de las propiedades químicas se muestra favorable en comparación con las otras tierras, probablemente a causa de la fertilización aplicada por los agricultores. La pérdida de materia orgánica afecta negativamente las condiciones físicas, especialmente la estructura del suelo; además, el monocultivo reiterado en el espacio y el tiempo conlleva a un aumento de enfermedades y plagas. Como consecuencia disminuye la producción, razón por la cual los agricultores dejan la tierra en barbecho para la recuperación natural. Por lo tanto, la tierra cansada se puede relacionar con los procesos de degradación del suelo por agotamiento, es decir, la reducción de la fertilidad del suelo debido a la remoción de nutrientes por las cosechas, el agua o alteraciones en la vida del suelo.

La 'tierra buena' corresponde a los terrenos dedicados a la vegetación arbórea, al café con sombrío y al bosque secundario. Los suelos muestran colores pardos oscuros, contenidos más altos de C total, N mineral, fracción LL y humedad del suelo, mayor densidad de miriápodos y de lombrices de tierra; en el caso del bosque, también se presenta mayor densidad de especies depredadoras. Los usos en bosque y cafetal exhiben propiedades similares, excepto para N y K que presentan contenidos más altos en los suelos cultivados con café, y una mayor densidad de hormigas, coleópteros, arañas y miriápodos en el bosque. Los agricultores consideran como 'tierras buenas' aquellas en las que, por poseer mejores condiciones de la capa arable, se facilita el laboreo y se pueden utilizar sin mayor inversión en insumos externos; así, extraen suelo del cafetal para acondicionar tierras de menor calidad y cajuelas para la siembra de café y plátano. Se infiere que la mayor calidad de esta tierra se basa en la dinámica de la materia orgánica.

Al analizar la proporción de la variabilidad total de las muestras de suelo a partir de los componentes principales, se observa que los componentes 1 y 2 explican el 79,7% de esta variabilidad. En el primer componente (48,8%) las variables originales de mayor importancia se asocian con valores decrecientes de Al, porcentaje de arcilla y de agregados de mayor tamaño, e incremento de pH, K y agregados pequeños. Es decir, propiedades físicas y químicas características de la 'tierra cansada' (tab. 6).

En el segundo componente (30,9%) tienen más influencia las variables relacionadas con la dinámica de la materia orgánica, lo que corresponde a las características de la 'tierra buena': colores oscuros y mayores contenidos de C total, N mineral y fracción LL. Estas variables correlacionan entre sí y con estabilidad de agregados al agua y humedad del suelo. Así por ejemplo, C total correlaciona con N (r = 0,74), fracción LL (r = 0,71), color oscuro (r = 0,87), estabilidad (r = 0,71) y humedad del suelo (r = 0,84).

Componente 1: 0,35 pH KCl + 0,33 potasio + 0,33 agregados (0,25 – 0,125 mm) – 0,39 arcilla – 0,35 aluminio – 0,33 agregados grandes (6,3–2 mm).

Componente 2: 0,44 fracción LL + 0,41 N mineral + 0,40 carbono total – 0,41 color.

Al calcular los componentes con los datos de cada réplica se observa que con el componente 1 se obtienen valores numéricos que diferencian la 'tierra cansada' de la 'tierra brava', donde la principal influencia la ejercen las propiedades físicas del suelo. Por tanto, con los porcentajes de agregados y de arcillas se pueden estimar valores numéricos para diferenciar las dos tierras sin necesidad de evaluar todas demás las variables. En cambio, usando el componente 2 se obtienen valores numéricos que posibilitan diferenciar claramente las tres tierras. Incluso el resultado es similar sin tener en cuenta la estimación de alguna de las variables, especialmente la fracción LL. Las réplicas de 'tierra brava' proporcionan valores negativos entre –14 y –8, las de 'tierra cansada' entre –6 y –1, mientras que en 'tierra buena' los valores oscilan entre 5 y 20 (tab. 7).

Esta información permite plantear la hipótesis que, para estimar la calidad de los suelos de las tierras 'brava', 'cansada' y 'buena' en Inceptisoles de ladera y bajo las condiciones en las que se tomaron las muestras para este estudio, es pertinente comprobar la interacción entre variables como color, carbono y nitrógeno. Ello, sin desconocer que las propiedades fisico-químicas del suelo permiten establecer correspondencias conceptuales con el conocimiento local. No obstante, con las propiedades físicas sólo se diferencian características específicas de la 'tierra brava' o 'cansada' que están asociadas con la dinámica de la materia orgánica. A partir de los macroinvertebrados no es fácil establecer diferencias definidas entre tierras a causa de su variabilidad, aunque es sugerente lo reportado sobre los miriápodos que es necesario profundizar. Las propiedades químicas no posibilitan una clara diferenciación porque se ven afectadas por la fertilización previa, por los valores similares entre bosque y 'tierra brava', y por su amplia variabilidad espacial (Buitrago, 1995).

Para terminar, se puede decir que la caracterización y el manejo de tierras de ladera que llevan a cabo los agricultores coinciden con lo que se infiere a partir del análisis de las propiedades químicas, físicas y biológicas del suelo. En términos del conocimiento académico, la 'tierra buena' se traduce en suelos con colores pardos oscuros, mejores contenidos de carbono total, nitrógeno mineral, fracción LL y humedad del suelo, así como mayor densidad de miriápodos. En oposición, las tierras 'brava' y 'cansada' se asocian con suelos de menor calidad derivados de la degradación de la capa arable, lo que se expresa en cambio del color, disminución de las variables antes mencionadas y deterioro de los agregados. La relación entre carbono total, nitrógeno mineral y color genera valores cuantitativos pertinentes para diferenciar la calidad de los suelos en concordancia con el criterio cultural local. Se sugiere realizar otros estudios que permitan indagar si se puede generalizar dicha inferencia a cualquier muestra de Inceptisoles de ladera de las tierras brava', 'cansada' y 'buena' en la microcuenca Potrerillo del municipio de Caldono.

Agradecimientos

Agradecemos a todas las personas y entidades que apoyaron la realización de este estudio, en especial a los agricultores de la microcuenca Potrerillo; así mismo, a Edmundo Barrios y Tomas Oberthur del CIAT, a Marina Sánchez de la Universidad Nacional de Colombia y a Hugo Ruiz de la Universidad de Nariño.


Literatura citada

Barrios E.; R. Buresh y J. Sprent. 1996. Organic matter in soil particle size and density fractions from maize and legume cropping systems. Soil Biol. Biochem. 28(2), 185-193.        [ Links ]

Buitrago, C. 1995. Estudio sobre la variabilidad espacial de las propiedades químicas de un suelo bajo dos condiciones cobertura de bosque natural y laboreo permanente. Trabajo de grado. Universidad Nacional de Colombia, Palmira. 112 p.        [ Links ]

Cerón, P. 2001. Uso manejo y clasificación local de suelos entre agricultores de la microcuenca Potrerillo (Cauca). Trabajo de grado. Universidad Nacional de Colombia, Palmira. 155 p.        [ Links ]

Escobar, L.F. 2003. Efecto del sistema de uso del suelo sobre la abundancia de poblaciones nativas de rizobios en la microcuenca Potrerillo, Departamento del Cauca. Trabajo de grado. Facultad de Estudios Ambientales y Rurales, Carrera de Ecología, Pontificia Universidad Javeriana, Bogotá. 72 p.        [ Links ]

IGAC (Instituto Geográfico Agustín Codazzi). 1976. Estudio general de suelos de los municipios de Santander de Quilichao, Piendamó, Morales, Buenos Aires, Cajibio y Caldono (Departamento del Cauca). Bogotá. 470 p.        [ Links ]

Pardo, L. 2003. Abundancia de chisas rizófagas (Coleoptera: Melolonthidae) en agroecosistemas de Caldono y Buenos Aires, Cauca (Colombia). Revista Colombiana de Entomología 29(2), 177-183.        [ Links ]

Parr, J.; S. Papendick; S. Hornick y R. Meyer. 1992. Soil quality: attribute and relationship to alternative and sustainable agricultural. American Journal of Alternative Agriculture 7(1,2), 5-11.        [ Links ]

Phiri, S.; E. Barrios; I. Rao y B. Singh. 2001. Changes in soil organic matter and phosphorus fractions under planted fallows and a crop rotation system on a Colombian volcanic-ash soil. Plant and Soil 231(2), 211-223.        [ Links ]

Ruppenthal, M. 1995. Soil conservation in andean cropping systems. Verlag Margraf, Weikersheim. 307 p.        [ Links ]

Sevilla, F. 2002. Distribución y abundancia de la macrofauna asociada con unidades locales de clasificación de suelos en la microcuenca Potrerillo, Cauca, Colombia. Trabajo de grado. Facultad de Agronomía, Universidad Nacional de Colombia, Palmira. 129 p.        [ Links ]

Thompson, J. y J. Bell. 1996. Color index for identifying hydric conditions for seasonally saturated mollisols in Minnesota. Soil Science Society of America Journal 60, 1979-1988.        [ Links ]

Creative Commons License Todo o conteúdo deste periódico, exceto onde está identificado, está licenciado sob uma Licença Creative Commons