SciELO - Scientific Electronic Library Online

 
vol.50 issue2Trophic habits of the flounder Citharichthys gilberti (Paralichthyidae) and its spatiotemporal variability in Buenaventura Bay, Colombian PacificThe environmental recovery of the main tourist destinations in the Colombian Caribbean during the Covid-19 quarantine author indexsubject indexarticles search
Home Pagealphabetic serial listing  

Services on Demand

Journal

Article

Indicators

Related links

  • On index processCited by Google
  • Have no similar articlesSimilars in SciELO
  • On index processSimilars in Google

Share


Boletín de Investigaciones Marinas y Costeras - INVEMAR

Print version ISSN 0122-9761

Bol. Invest. Mar. Cost. vol.50 no.2 Santa Marta July/Dec. 2021  Epub Dec 03, 2021

https://doi.org/10.25268/bimc.invemar.2021.50.2.1106 

NOTE

Short-term response of water physicochemical parameters to the hydrological rehabilitation of channels in mangroves from Cispata, Colombian Caribbean

Ostin Garcés-Ordóñez1  * 
http://orcid.org/0000-0001-7942-0371

Jenny Alexandra Rodríguez-Rodríguez2 
http://orcid.org/0000-0001-8082-8374

Luisa Espinosa Díaz3 
http://orcid.org/0000-0003-1452-3104

Fabián Escobar Toledo4 
http://orcid.org/0000-0003-2479-6755

Denise Delvalle Borrero55 
http://orcid.org/0000-0002-7696-9710

1Instituto de Investigaciones Marinas y Costeras “José Benito Vives de Andréis” -Invemar. Santa Marta, Colombia. ostin.garces@invemar.org.co

2Instituto de Investigaciones Marinas y Costeras “José Benito Vives de Andréis” -Invemar. Santa Marta, Colombia. alexandra.rodriguez@invemar.org.co

3Red de Vigilancia para la Conservación y Protección de las Aguas Marinas y Costeras de Colombia -REDCAM, Santa Marta, Colombia. luisa.espinosa@invemar.org.co

4Instituto de Investigaciones Marinas y Costeras “José Benito Vives de Andréis” -Invemar. Santa Marta, Colombia. fabian.escobar@invemar.org.co

5Universidad Tecnológica de Panamá, Centro de Investigaciones Hidráulicas e Hidrotécnicas Ciudad de Panamá, Panamá. denise.borrero@utp.ac.pa


ABSTRACT

The present study evaluated the short-term response (<six months), of water physicochemical parameters to hydrological rehabilitation (HR) of clogged channels in mangrove of Cispata, Colombian Caribbean. Between September 2018 and September 2019, we measure the water physicochemical parameters before and after the HR. The index of marine and coastal water quality (ICAMPFF) in channels and swamps was calculated. Before the HR, in some stations, water quality was very poor, in other inadequate, and in other acceptable; after five months of HR in all stations, water quality became acceptable. After HR, the salinity and temperature of the water within the mangrove decreased to adequate values for the mangrove seedlings. In the short term, HR significantly improved the physicochemical conditions of the water required for the preservation of fauna and seedlings in the channels, swamps, and within the mangrove forest. Our findings are applicable in the mangrove restoration management and their adaptive handling.

KEYWORDS: mangrove rehabilitation; water quality; natural regeneration; restoration indicators.

RESUMEN

Se evaluó la respuesta en el corto plazo (< seis meses) de parámetros fisicoquímicos del agua a la rehabilitación hidrológica (RH) de caños colmatados en manglares de Cispata, Caribe colombiano. Entre septiembre 2018 y septiembre 2019 se midieron parámetros fisicoquímicos antes y después de la RH. Se calculó el Índice de Calidad de Aguas Marinas y Costeras (ICAMPFF) en caños y ciénagas. La calidad del agua antes de la RH en algunas estaciones era pésima, en otras inadecuada y aceptable; después de cinco meses de la RH, la calidad fue aceptable en todas las estaciones. Después de la RH la salinidad y temperatura del agua dentro del manglar disminuyeron a valores adecuados para las plántulas de mangles. En el corto plazo, la RH mejoró significativamente las condiciones fisicoquímicas del agua en caños, ciénagas y dentro del manglar para la preservación de fauna y plántulas de mangles. Los resultados son aplicables en la gestión de la restauración de manglares y su manejo adaptativo.

PALABRAS CLAVE: rehabilitación de manglar; calidad del agua; regeneración natural; indicadores de restauración.

Hydrological rehabilitation (HR) is an ecological restoration technique that aims to repair the processes and functionality of hydrology in ecosystems where its alteration has caused degradation (Lewis, 2005). Different authors have implemented this technique in Central American and Colombian mangroves (Sánchez-Páez et al., 2004; Teutli and Herrera, 2016).

The Cispata Integrated Management District (DMI Cispata) is a protected area of ~ 27 171 ha on the Colombian Caribbean coast, where some mangrove areas, such as the Dago-Ustria sector (Figure 1), have deteriorated due to the clogging of channels, interruption of water flows, and salt crust formation, which affect water quality (CVS and Invemar, 2010; Invemar, 2017). In 2019, environmental institutions and the local community rehabilitated 3267 m of clogged/plugged channels to restore hydrological connectivity (Invemar, 2017).

Figure 1 Study area. Red (A1-A6) and black (M1-M10) points are the water quality stations in channels and swamps and within mangroves. Stations M1, M2, and M7 are in preserved mangroves used as a reference. 

The objective of this study was to evaluate the short-term responses (< six months) of the water physicochemical parameters in the rehabilitated channels and within the mangrove forests in the Dago-Ustria sector. Species Rhizophora mangle, Avicennia germinans, and Laguncularia racemosa make up the mangrove forest in Dago sector (Rojas-Aguirre et al., 2018). The climate is tropical rainy savanna with a dry season; multiannual averages (1981-2010) of precipitation range between 1000-1500 mm (heavier rainfall in May and September), temperature between 26-28 °C, relative humidity between 80-85 %, and evapotranspiration between 1200-1400 mm (IDEAM, 2014a, 2014b).

The hydrological dynamics are modulated by the flows of the Sinú River (regulated since 1999 by Urrá I hydroelectric dam), the rainy seasons and the action of the Caribbean Sea (Ruíz-Ochoa et al., 2008). Historically, the Sinú River has formed the deltas Venados (before 1762), Mestizos (1762-1849), Cispata (1849-1938), and Tinajones (1938-present) (Serrano, 2004; Ramos et al., 2015). In the DMI Cispata, low waters (January-May) and high waters (June-December) correspond to a decrease or increase in the flow of the Sinú River with respect to the annual average (389 m3/S), lagging by one or two months from the dry and rainy seasons (Ramos et al., 2015).

Considering the above, the samplings were carried out in September 2018 (before HR, rainy season), March 2019 (before HR, dry season), June 2019 (after two months of HR, dry season), and September 2019 (after five months of HR, rainy season). From August 2018 to July 2019, Niño conditions were present, the condition were normal from August to December 2019 (NOAA, 2020).

In April 2019, the HR of the Dago (1500 m), Ustria-1 (602 m), Ustria-2 (700 m), and Ustria-3 (465 m) channels were carried out (Figure 1), using machetes, axes, and shovels removing plant material and sediment up to 1 m deep and at least 1 m wide (Figure 2). In the Ustria-1 and Ustria-3 channels, we made two secondary channels of 40 m long, 50 cm deep, and 1 m wide, to enable water to flow into the salt planes (Figure 1).

Figure 2 Rehabilitation of the Dago a) and Ustria-1 b) channels in the DMI Cispata. Photos: ASOMAPESCA and Invemar. 

To evaluate the water quality in channels and swamps, we established six sampling stations (A1-A6; Figure 1). We measure in situ temperature, salinity, pH, and dissolved oxygen (DO) of the surface water, three times at each station, using a HACH multiparameter. Additionally, we collected a water sample at a depth of 30 cm, with field control, traveling control sample, and replicas, to measure the parameters described in Table 1. Before HR in the rainy season, we were unable to perform measurements at station A6.

Table 1 Laboratory methods used for the analysis of water quality parameters. 

We selected ten stations within the mangrove forest (M1-M10; Figure 1), of which M1-M2 and M7 were located in the preserved mangrove as reference stations. Stations M3-M6, M8-M10 were located in the mangrove forest degraded by the salt crust formation. At each station, the salinity, temperature, and pH in the surface and interstitial waters (depth: 0.5 m) were measured at three points, using the HACH multiparameter, and the water level was determined using a ruler. We use the methodology Invemar (2018a) to obtain the interstitial water samples. At station M7, it was not possible to perform measurements before HR in the rainy season.

We compared our results with the national criteria for flora and fauna preservation in estuarine waters (MinAmbiente, 2015) and with reference values. The Index of Marine and Coastal Waters Quality for Flora and Fauna Preservation (ICAMPFF) was calculated in channels and swamps, with data of DO, pH, nitrates, orthophosphates, TSS, chlorophyll a, and BOD5 (Invemar, 2018b), and with a confidence margin of 86 %. The ICAMPFF qualifies the water quality as optimal, adequate, acceptable, inadequate, and poor (Invemar, 2018b). The significant differences between the four samplings carried out before and after the HR were determined with the Kruskal-Wallis test, in InfoStat® professional version 2016, with a 95 % confidence interval.

In the surface water of channels and swamps, the values of temperature, salinity, and pH decreased after the HR (Figure 3a-c), showing significant differences between the samplings before and after the HR (Temperature: P = 0.006; Salinity: P = 0.004; pH, P = 0.011). The DO increased slightly after HR in some stations (Figure 3d), without significant differences. BOD5, nitrates and nitrites increased and TSS decreased after HR (Figure 3e-h), showing significant differences before and after HR (BOD5: P = 0.006; TSS: P = 0.005; nutrients: P = 0.001). The chlorophyll-a concentration did not show significant differences.

Figure 3 Results of the water physicochemical parameters in channels and swamps: ARH-ES (before HR, dry season), D2RH-ES (after two months of HR, dry season), ARH-EL (before HR, rainy season) and D5RH-EL (after five months of HR, rainy season). **Reference for water classification according to salinity (Knox, 2001). *Permissible limits of Colombian legislation for flora and fauna preservation in estuarine waters (MinAmbiente, 2015). 

The ICAMPFF showed that before the HR in the rainy season the water quality was poor and inadequate at stations A2 and A6 respectively, and acceptable in the other stations; and in the dry season, the water quality was inadequate at stations A4-A6 and acceptable at stations A1-A3 (Figure 4). After two months of the HR, water quality improved at all the stations, except for A1 and A4; and after five months, the water quality was acceptable at all stations (Figure 4).

Figure 4 ICAMPFF results before and after HR in the Dago-Ustria sector, DMI Cispata. Classification of water quality according to ICAMPFF: 1) poor, 2) inadequate, 3) acceptable, 4) adequate, and 5) optimal. 

After the HR, flooding within the mangrove forest increased (Figure 5a), showing significant differences before and after the HR (P = 0.0001). The highest salinities, temperature, and pH were recorded at the degraded mangrove stations, which decreased after HR (Figure 5b-d), showing significant differences before and after HR (Salinity: P = 0.0028; temperature: P = 0.0001; pH: P = 0.0005). Between the reference stations and those of the degraded mangrove, salinity, temperature, and pH of the water after the HR were not significantly different.

Figure 5 Results of the physicochemical parameters of the water within the mangrove forest. Sampling: ARH-ES (before HR, dry season), D2RH-ES (after two months of HR, dry season), ARH-EL (before HR, rainy season), and D5RH-EL (after five months of HR, rainy season). The green boxes indicate the reference plots (M1, M2, and M7). 

The HR improved the physicochemical conditions of the water in the study area, resulting in acceptable conditions for the preservation of fauna and mangrove plants. The climatic season can accelerate or limit the changes in the water physicochemical parameters (Invemar, 2018a); therefore, long-term water quality monitoring is necessary.

The HR allowed freshwater to enter the channels, swamp, and within the mangrove forest of the Ustria sector in the dry season, reducing salinity to < 10. This salinity is characteristic of oligohaline brackish waters (> 0.6-10; Knox, 2001) and is optimal for seedling growth (3-27; Krauss et al., 2008). Likewise, the temperature of the surface water decreased. At the M3 station, 43 °C were recorded in the surface water before the HR, which exceeds 35 °C and can affect the growth of propagules (Febles et al., 2007), besides causing necrotic lesions on the leaves by overcoming 40 °C (Krauss et al., 2008) and influencing other physicochemical parameters related to nutrition (Reef et al., 2010). After HR, the water temperature ranged between 28-32 °C, adequate for the growth of mangrove seedlings (Krauss et al., 2008).

The pH of the water in channels and swamps was within the permissible range for flora and fauna preservation (Figure 3c). Within the mangrove forest, the pH of the water was similar to that registered at the reference stations and was within the typical range reported for mangroves from the Colombian Caribbean (5.0-8.2; Garcés-Ordóñez and Vivas-Aguas, 2014). This pH favors the availability of essential nutrients (Reef et al., 2010). At most stations, the DO was lower than the permissible limit for flora and fauna preservation in estuarine waters (Figure 3d) and below 2 mg O2/L (suboxic condition), associated with the increased BOD5, possibly due to the removal of organic matter during the HR.

In conclusion, in the short term, the HR in the Dago-Ustria sector induced rapid changes in the physicochemical conditions of the water in the channels, swamps, and within the degraded mangrove forest, improving the water quality for the preservation of fauna and mangrove plants. Long-term water quality monitoring (> five years) is necessary to show significant changes adjusted to temporary environmental variations. In addition, it is equally necessary to include and monitor of biological indicators (fish and natural regeneration) that respond to improvements in the habitat conditions. This long-term monitoring will yield information for the adaptive management of mangrove restoration in the Cispata DMI and in other mangrove areas of Colombia.

ACKNOWLEDGMENTS

This work is part of the MAPCO Action, co-financed by the European Union, Invemar, and Natura Foundation. Thanks to Invemar and Universidad Jorge Tadeo Lozano for the institutional support, to the researcher Felipe Valencia for the cartographic support and to the San Antero community for the support in the fieldwork. Scientific contribution of Invemar No. 1299.

BIBLIOGRAFÍA/ LITERATURE CITED

APHA, AWWA and WEF. 2017. Standard methods for the examination of water and wastewater. 23 rd ed. Am. Public Health Assoc., Am. Water Works Assoc., Water Environ. Fed., Washington. 1400 p. [ Links ]

CVS e Invemar. 2010. Plan integral de manejo del Distrito de Manejo Integrado (DMI) bahía de Cispata - La Balsa - Tinajones y sectores aledaños del delta estuarino del río Sinú, departamento de Córdoba. Rojas, G. X y P. Sierra-Correa (eds.). Serie de Publicaciones Especiales 18 Invemar. 141 p. [ Links ]

Febles, J. L., J. Novelo López y E. Batllori Sampedro. 2007. Efecto de factores abióticos en el desarrollo de raíces primarias, crecimiento y supervivencia de propágulos en Rhizophora mangle. Madera y bosques, 13(2): 15-27. https://dx.doi.org/10.21829/myb.2007.1321226Links ]

Garay, J., G. Ramírez, J. M. Betancourt, B. Marín, B. Cadavid, L. Panizzo, L. Lesmes, J. E. Sánchez, S.H. Lozano y A. Franco. 2003. Manual de técnicas analíticas para la determinación de parámetros fisicoquímicos y contaminantes marinos: Aguas, sedimentos y organismos. Invemar, Santa Marta. 148 p. [ Links ]

Garcés-Ordóñez, O. y L.J. Vivas-Aguas. 2014. Calidad del agua en áreas priorizadas de manglar en el Caribe y Pacífico colombianos. Convenio No. 190 de 2014 MADS-Invemar, Santa Marta. 137 p. [ Links ]

IDEAM. 2014a. Clasificaciones climáticas. Inst. Hidrol., Met.. Est. Amb. http://atlas.ideam.gov.co/cclimatologicas/info/clasifclim.htmlLinks ]

IDEAM. 2014b. Atlas climatológico de Colombia 1981-2010. Inst. Hidrol., Met. Est. Amb..http://atlas.ideam.gov.co/visorAtlasClimatologico.htmlLinks ]

Invemar. 2017. Plan básico de restauración y monitoreo para 150 ha de manglar en el distrito de manejo integrado de Cispata, Córdoba. Inf. técn. final. Santa Marta, 43 p. [ Links ]

Invemar. 2018a. Monitoreo de las condiciones ambientales y los cambios estructurales y funcionales de las comunidades vegetales y de los recursos pesqueros durante la rehabilitación de la Ciénaga Grande de Santa Marta. Inf. Técn. Final 2017. Vol.16. Santa Marta 174 p.+ anexos. http://www.invemar.org.co/inf-cgsmLinks ]

Invemar. 2018b. Indicador de calidad de aguas marinas y costeras para la preservación de flora y fauna. Disponible desde internet en: Disponible desde internet en: http://siam.invemar.org.co/redcam-icam (con acceso el 27/01/2018). [ Links ]

Knox, G.A. 2001. The ecology of seashore. CRC Press, Boca Raton, EE. UU. 557 p. [ Links ]

Krauss, K., C. Lovelock, K. Mckee, L. López-Hoffman, S. Ewe and W. Sousa. 2008. Environmental drivers in mangrove establishment and early development: a review. Aquat. Bot., 89: 105-127. https://doi.org/10.1016/j.aquabot.2007.12.014. [ Links ]

Lewis, R. 2005. Ecological engineering for successful management and restoration of mangrove forests. Ecol. Eng., 24(4): 403-418. https://doi.org/10.1016/j.ecoleng.2004.10.003Links ]

MinAmbiente. 2015. Decreto 1076 de 26 de mayo de 2015. Decreto Único Reglamentario del Sector Ambiente y Desarrollo Sostenible. Bogotá, 653 p. https://www.suin-juriscol.gov.co/viewDocument.asp?id=30019960Links ]

NOAA. 2020. Historical El Nino / La Nina episodes (1950-present). https://origin.cpc.ncep.noaa.gov/products/analysis_monitoring/ensostuff/ONI_v5.phpLinks ]

Ramos, L., C. Giraldo, J. Beltran, H. Bustos, H. Castillo, R. Acevedo, C. Ruiz, F. Valencia y J. Bolaño. 2015. Plan de seguimiento y monitoreo de la zona deltaico estuarina del río Sinú (noviembre 2000 - diciembre 2015). Invemar. Inf. Técn. Final, fase XVIII empresa URRÁ S.A. E.S.P., Santa Marta. 388 p + anexos y mapas. [ Links ]

Reef, R., I. Feller and C. Lovelock. 2010. Nutrition of mangroves. Tree Physiol., 30 (9): 1148-1160. https://doi.org/10.1093/treephys/tpq048Links ]

Rojas-Aguirre, S., L. Cardona, O. Garcés-Ordóñez y J. Beltran. 2018. Monitoreo ambiental de los manglares de Cispatá, Córdoba, para el fortalecimiento del Sistema de Información para la Gestión de los manglares de Colombia-SIGMA. Informe técnico final convenio 032-2017 CVS-URRÁ S.A. E.S.P. e Invemar. Código PRY-CAM-017-17, Santa Marta. 48 p. [ Links ]

Ruíz-Ochoa, M., G. Bernal y J. Polanía. 2008. Influencia del río Sinú y el mar Caribe en el sistema lagunar de Cispata. Bol. Invest. Mar. Cost., 37(1): 29-49. https://doi.org/10.25268/bimc.invemar.2008.37.1.180Links ]

Sánchez-Páez, H., G. Ulloa y H. Tavera. 2004. Manejo integral de los manglares por comunidades locales, Caribe de Colombia. Proyecto PD 60/01 Rev. 1. (F): manejo sostenible y restauración de los manglares por comunidades locales del Caribe de Colombia. MAVDT, CONIF y OIMT. Bogotá. 335 p. [ Links ]

Serrano, B. 2004. The Sinú river delta on the northwestern Caribbean coast of Colombia: Bay infilling associated with delta development. J. SA Earth Sci., 16(7): 623-631. https://doi.org/10.1016/j.jsames.2003.10.005Links ]

Strickland, J.D.H. and T.R. Parsons. 1972. A practical handbook of seawater analysis. 2nd Ed. Fish. Res. Board Canada, Ottawa. 328 p. https://epic.awi.de/id/eprint/39262/1/Strickland-Parsons_1972.pdfLinks ]

Teutli, C. y J. Herrera-Silveira. 2016. Capitulo 20: Estrategia de restauración de manglares de México: el caso Yucatán. 459-484. En: Ceccon, E. y C. Martínez (Eds.) Experiencias mexicanas en la restauración de los ecosistemas. Prim. Ed. UNAM, UAEM Conabio, Cuernavaca. 577 p. https://www.crim.unam.mx/web/sites/default/files/Experiencias%20mexicanas.pdfLinks ]

Received: August 15, 2020; Accepted: April 11, 2021

*Autor de correspondencia: ostin.garces@invemar.org.co

Creative Commons License This is an open-access article distributed under the terms of the Creative Commons Attribution License