SciELO - Scientific Electronic Library Online

 
vol.50 suppl.1Benthic polychaetes collected in the III Expedición “Admiral Padilla” Austral Summer 2016-2017, to the north of the Antarctic Peninsula author indexsubject indexarticles search
Home Pagealphabetic serial listing  

Services on Demand

Journal

Article

Indicators

Related links

  • On index processCited by Google
  • Have no similar articlesSimilars in SciELO
  • On index processSimilars in Google

Share


Boletín de Investigaciones Marinas y Costeras - INVEMAR

Print version ISSN 0122-9761

Bol. Invest. Mar. Cost. vol.50  supl.1 Santa Marta Dec. 2021  Epub Dec 14, 2021

https://doi.org/10.25268/bimc.invemar.2021.50.suplesp.951 

Notes

Insights into the genetic diversity of the leopard seal (Hydrurga leptonyx), inferred from mitochondrial DNA analysis, at Danco Coast, Antarctic Peninsula

Laura Valentina Hernández-Ardila1 
http://orcid.org/0000-0003-3652-0027

Dalia C. Barragán-Barrera2  * 
http://orcid.org/0000-0003-4023-9908

Javier Negrete3 
http://orcid.org/0000-0001-6853-8307

Sebastián Poljak4 
http://orcid.org/0000-0001-7972-9352

Federico G. Riet-Sapriza5 
http://orcid.org/0000-0002-6568-2802

Susana Caballero6 
http://orcid.org/0000-0002-9285-3873

1Laboratorio de Ecología Molecular de Vertebrados Acuáticos-LEMVA, Departamento de Ciencias Biológicas, Universidad de los Andes, Carrera 1 No. 18A-10, Bogotá, Colombia. lv.hernandez10@uniandes.edu.co

2Programa Antártico Colombiano, Comisión Colombiana del Océano, Carrera 86 # 51 - 66 Oficina 306 Edificio World Business Center-WBC, Bogotá, Colombia. daliac.barraganbarrera@gmail.com

3Departamento de Biología de Predadores Tope, Instituto Antártico Argentino, Avenida 25 de Mayo, San Martín, Buenos Aires , Argentina. negretejavi@gmail.com

4Instituto de Ciencias Polares, Ambiente y Recursos Naturales, ICPA-UNTDF, Ushuaia, Tierra del Fuego, Argentina. sebapoljak@hotmail.com

5Instituto Antártico Uruguayo, Av. 8 de Octubre 2958, 11600 Montevideo, Uruguay. frietsapriza@gmail.com

6Laboratorio de Ecología Molecular de Vertebrados Acuáticos-LEMVA, Departamento de Ciencias Biológicas, Universidad de los Andes, Carrera 1 No. 18A-10, Bogotá, Colombia. sj.caballero26@uniandes.edu.co


ABSTRACT

The leopard seal (Hydrurga leptonyx) is a genetically low-studied species. In order to conduct the first genetic diversity assessment of this species in Danco Coast (Antarctic Peninsula), 423 bp of the mitochondrial DNA Control Region (mtDNA-CR) was sequenced from 13 blood samples collected in Primavera Base (62º15’S, 58º39’W) during the 2011-2012 austral summer. Our results showed high haplotype diversity (h = 0.99), with various divergent haplotypes. Our findings suggest that leopard seals in the Danco Coast could represent different phylogroups; however, including more genetic markers are needed to confirm this hypothesis.

KEYWORDS: Seal; Pinnipeds; mtDNA; Control Region; Antarctica.

RESUMEN

La foca leopardo (Hydrurga leptonyx) es una especie poco estudiada a nivel genético. Con el fin de realizar la primera evaluación de la diversidad genética de esta especie en la costa de Danco (Península Antártica), se secuenció 423 pb de la Región Control del ADN mitocondrial (ADNmt-CR) de 13 muestras de sangre colectadas en la Base Primavera (62º15’S, 58º39’W) durante el verano austral 2011-2012. Los resultados mostraron una alta diversidad de haplotipos (h = 0.99), con varios haplotipos divergentes. Nuestros hallazgos genéticos sugieren que las focas leopardo de la costa de Danco podrían representar diferentes filogrupos; sin embargo, es necesario incluir más marcadores genéticos para confirmar esta hipótesis.

PALABRAS CLAVE: Foca; Pinnípedos; ADNmt; Región Control; Antártida.

The leopard seal (Hydrurga leptonyx) is an Antarctic pinniped with a wide circumpolar distribution that includes both Antarctic and Subantarctic waters (Bester et al., 2002; Rodríguez et al., 2003; Hückstädt, 2015; Rogers, 2018) (see Figure 1). The leopard seal is a solitary and pagophilic species that disperses widely at low densities along the ice shelf (Rogers, 2009), and some individuals move to Subantarctic zones. Opportunistic sightings of leopard seals in several countries outside their primary range include Argentina (Castello and Rumboll, 1978; Rodríguez et al., 2003; Daneri et al., 2011), Brasil (Pinedo, 1990; Rosas et al., 1992; Ferreira et al., 1995; Silva, 2004; Moura et al., 2011), Chile (Hückstädt, 2015; Acevedo et al., 2017), Uruguay (Juri, 2017), South Africa (Best, 1971; Vinding et al., 2013; Hückstädt, 2015; unpublished data from citizen science), New Zealand, and Australia (Shaughnessy et al., 2012; Hückstädt, 2015; Rogers, 2018) (Figure 1, table S1 in supplementary material). However, this species shows area-restricted behaviors (Meade et al., 2015) and as a result, it may potentially show some population structure (Davis et al., 2008).

Leopard seal shows a wide range in diet and feeds on prey from low trophic level such as krill, to high trophic level such as fish, cephalopods, penguins, and even pups of other seal species (Hall-Aspland and Rogers, 2004; Zhao et al., 2004; Casaux et al., 2009; Botta et al., 2018). Climate change has caused a reduction in ice levels, which has subsequently changed the epipelagic plankton assembly (Mendes et al., 2013; Giraldo et al., 2019; Mojica and Franco-Herrera, 2019). Consequently, leopard seals have shown increased consumption of krill (Guerrero et al., 2014; Botta et al., 2018). These dietary specializations could show lead to long-term population genetic divergences as has been reported in Antarctic killer whales (LeDuc et al., 2008).

Divergences related with life history traits of this species have been reported in vocalizations emitted by leopard seal individuals (Thomas and Golladay, 1995; Rogers and Cato, 2002), which are mainly associated with reproductive behavior (Rogers, 2018). Particularly, adult males tend to have more unique vocal repertoires (Rogers and Cato, 2002; Rogers, 2007), which could have repercussions on the population’s structure if this acoustic divergence affects partner selection by females (Rogers, 2009).

Given the leopard seal’s biology traits as area-restricted behaviors, divergences in diet and vocalizations related to reproduction, and fidelity to molting and reproduction sites (Walker et al., 1998; Hiruki et al., 1999; Hall-Aspland et al., 2004; Negrete et al., 2014), it is possible that there is some degree of genetic differentiation among individuals (Hamilton, 2009). Nevertheless, because the leopard seal’s pagophilic habits allows an expanded distribution onto the pack ice, it is also possible that individuals can keep genetic connectivity between isolated populations. However, genetic analyses of the leopard seal are very scarce (e.g., Slip et al., 1994; Fyler et al., 2005; Bonillas-Monge, 2018) due to its wide solitary distribution even in remote areas (Southwell et al., 2003; Davis et al., 2008), making it one of the least studied species of Antarctica’s phocids at the population level. Therefore, here we present the first description of the genetic diversity of leopard seals in the Danco Coast, near Base Primavera in the Antarctic Peninsula, using a 423 base pairs (bp) fragment of the maternally inherited mitochondrial DNA Control Region (mtDNA-CR).

Blood samples of 13 adult leopard seals were collected during the austral summer of 2011-2012 near the Base Primavera (62º15’S, 58º39’W) at the Danco Coast (64° 09’ S, 60° 57’ W, Figure 1). The animals were immobilized using a dart launch system with a tele-injection air gun from either the ice or from a boat depending on the individuals’ location (Botta et al., 2018). Sex determination was performed by visual inspection of the external genital organs. Blood samples were taken from extradural intervertebral vein and stored in EDTA (ethylenediaminetetraacetic acid) at -20 °C for subsequent genetic analyses.

Figure 1 Distribution range of the leopard seal (Hydrurga leptonyx) on the Antarctic Peninsula as primary range, including occurrences outside Antarctic waters as secondary range (Oceania, South Africa, and South America). Red circle indicates location of Argentine Antarctic Base Primavera (62º15’S, 58º39’W), which is located in the vicinity of the Danco Coast northwest of the Antarctic Peninsula (64°09’S, 60°57’W), where leopard seal samples were collected for this study. 

DNA was extracted using the Stratec molecular© kit for blood and tissue following standard blood extraction protocol. A fragment of approximately 450 bp of mtDNA-CR was amplified by a Polymerase Chain Reaction (PCR) using the primers forward TRO (5-CCTCCCTAAGACTCAAGG-3’) and reverse D (3’-GTAGACCAAGAATGAAGTCC-5’) (Slade et al., 1994), following the protocol described in Barragán-Barrera et al. (2017). The PCR products were purified following the Polyethylene glycol protocol (20 % PEG), and the DNA was sequenced using Sanger’s method (Sanger and Coulson, 1975).

Sequences were trimmed to 423 bp, edited and aligned using the Muscle algorithm in the software Geneious version 11 (Drummond et al., 2009). Haplotype characterization was performed using MacClade’s software (Maddison and Maddison, 2011). The software Network (Bandelt et al., 1999) was used to build a haplotype network with sequences obtained and the only mtDNA-CR sequence available in NCBI for the leopard seal published by Slade et al. (1994) (GenBank accession number U03590.1), using the Median Joining (M-J) method. Finally, the software Arlequin 3.5 (Excoffier and Lischer, 2010) was used to assess genetic diversity including the haplotypic (h) and nucleotide (π) diversity indexes.

Thirteen haplotypes were found in the 14 analyzed individuals (12 haplotypes from 13 Danco Coast samples, and one haplotype reported by Slade et al. (1994), of which only the haplotype named HL6 was shared by two individuals. The 12 haplotypes sequences identified in Danco Coast were submitted to GenBank as accession numbers MW168801 to MW168812 (table S2 in supplementary material).

In the haplotype network, the haplotype that was reported by Slade et al. (1994), named here as CR1, was connected by one mutational step to haplotype HL1, which appears to be the most ancestral, due to their central position and the number of connections to other haplotypes originating in it (Caballero et al., 2015). Haplotypes HL2, and HL3 were also connected to HL1 by one mutation step, while haplotypes HL7, HL8, HL9, HL10, and HL12 were connected to HL1 by more than one mutational step (Figure 2). For example, HL7, HL8, HL10, and HL12 appear to be the more divergent haplotypes, separated from HL1 by a higher number (> 5) of mutational steps.

Figure 2 Haplotypic network of leopard seals individuals (Hydrurga leptonyx) presented in the Danco Coast, Antarctic Peninsula. CR1 haplotype corresponds to the unique published sequence in NCBI by Slade et al. (1994)

Regarding haplotype (h) and nucleotide (π) diversities, in this study we found high values for the leopard seal (h = 0.99; π = 1.76 %; N = 14), similar to values reported for other pinniped species that reproduce on pack ice such as the hooded seal (Cystophora cristata; h = 0.98; π = 1.47 %; N = 123; Davis et al., 2008). These pagophilic species show high genetic diversities likely due to the unstable nature of ice habitat, which hinders site fidelity, resulting in a large reproductive population. In fact, it has been suggested that pagophilic pinniped distribution at low densities along pack ice does not favor the development of population structure even if individuals return to natal areas (Davis et al., 2008).

Our results suggest that the leopard seal population sampled near the Primavera Base has a high genetic diversity, represented by a very low number of shared haplotypes (except for the HL6 haplotype), as well as some divergent haplotypes, which is particularly interesting considering the low sample size and that all the individuals were sampled in the same area. It is possible that leopard seals sampled in the Danco Coast could represent different phylogroups, likely because this species shows site fidelity to reproductive sites despite to its wider distribution favored by their pagophilic habits (Rogers, 2018). However, it is possible that climate change may affect its distribution and potentially its genetic structure, particularly in the western Antarctic Peninsula where higher temperatures have been reported (Vaughan et al., 2003; IPCC, 2014; Mojica-Moncada et al., 2019). Likely, more ice pack presence can maintain a wider genetic connectivity or can restrict gene flow due to premature thawing ice pack. Further genetic studies including the evaluation of nuclear genes and the inclusion of a higher number of samples from other geographical regions along the Antarctic Peninsula is necessary to determine the genetic status of the leopard seal in this region, given its potential vulnerability to the effects of climate change.

ACKNOWLEDGMENTS

This study was made possible thanks to the international cooperation developed within the framework of the II Scientific Expedition of Colombia to the Antarctica “Admiral Lemaitre”. We really appreciate the support of the Dirección Nacional del Antártico Argentino and the Instituto Antártico Argentino who provided all needed logistic to conduct fieldtrips. Special thanks to the Colombian Antarctic Program, to the Armada Nacional de Colombia, the Comisión Colombiana del Océano, and to the crew of the “ARC 20 Julio” vessel for their valuable support for the successful development of Colombia’s Scientific Expeditions to Antarctica. We thank to Diego F. Mojica-Moncada for his logistic support. We also thank to the technical team of laboratory in the Universidad de los Andes, and Sonia Quintanilla for their valuable support in laboratory work. The Colombian Sciences Ministry (MinCiencias) is acknowledged for providing to Dalia C. Barragán-Barrera a postdoctoral fellowship trough Francisco José de Caldas Fund (Call No. 848 of 2019).

BIBLIOGRAFÍA / LITERATURE CITED

Acevedo, J., A. González, S. Garthe, I. Gonzalez, R. Gómez and A. Aguayo-Lobo. 2017. Births of leopard seal Hydrurga leptonyx in southern Chile. Polar Biol., 40: 713-717. [ Links ]

Bandelt, H.J., P. Forster and A. Röhl. 1999. Median-joining networks for inferring intraspecific phylogenies. Mol. Biol. Evol., 16: 37-48. [ Links ]

Barragán-Barrera, D.C., L. J. May-Collado, G. Tezanos-Pinto, V. Islas-Villanueva, C. Correa-Cárdenas, C.A. and S. Caballero. 2017. High genetic structure and low mitochondrial diversity in bottlenose dolphins of the archipelago of Bocas del Toro, Panama: a population at risk? PLoS One, 12(12): e0189370. [ Links ]

Best, P. B. 1971. A leopard seal from Hout bay, South Africa. Zool. Afr., 6: 177-179. [ Links ]

Bester, M. N., J. W. H. Ferguson and F. C. Jonker. 2002. Population densities of pack ice seals in the Lazarev Sea, Antarctica. Antarct. Sci., 14(2): 123-127. [ Links ]

Bonillas-Monge, M. 2018. Historical dynamics of Leopard Seal (Hydrurga leptonyx) and Southern Elephant Seal (Mirounga leonina) populations in the Southern Ocean. Master thesis, Durham University, Durham . Abstract. 151 p. [ Links ]

Botta, S., E. R. Secchi, T. L. Rogers, J. H. F. Pradoa, R. C. de Lima, P. Carlini and J. Negrete. 2018. Isotopic niche overlap and partition among three Antarctic seals from the Western Antarctic Peninsula. Deep-Sea Res. Pt. II., 149: 240-249. [ Links ]

Caballero, S., Correa-Cárdenas, C. A. and F. Trujillo. 2013. Population Structure and Genetic Diversity of the Endangered South American Giant Otter (Pteronura brasiliensis) from the Orinoco Basin in Colombia: Management Implications and Application to Current Conservation Programs. J Heredity, 106: 469-477. [ Links ]

Casaux, R., A. Baroni, A. Ramón, A. Carlini, M. Bertolin and C. Y. DiPrinzio. 2009. Diet of the leopard seal Hydrurga leptonyx at the Danco Coast, Antarctic Peninsula. Polar Biol., 32(2): 307-310. [ Links ]

Castello H.P. and M. Rumboll. 1978. Extension of range of the leopard seal, Hydrurga leptonyx, for the Argentine coast. Mammalia, 42: 135-137. [ Links ]

Coltman, D. W., G. Stenson, M. O. Hammill, T. Haug, C. S. Davis and T. L. Fulton. 2007. Panmictic population structure in the hooded seal (Cystophora cristata). Mol. Ecol., 16(8): 1639-1648. [ Links ]

Daneri G. A., E. A. Varela, C. C. Di Martino, A. Harrington and R. A. Montiel R.A. 2011. Atypical records of pinniped specimens housed in the Museo Argentino de Ciencias Naturales. Lat. Amer. J. Aquat. Mamm., 9: 150-153. [ Links ]

Davis, C. S., I. A. N. Stirling, C. Strobeck and D. W. Coltman. 2008. Population structure of ice-breeding seals. Mol. Ecol., 17(13): 3078-3094. [ Links ]

Drummond, A. J., B. Ashton, M. Cheung, J. Heled, M. Kearse, R. Moir, S. Stones-Havas, T. Thierer and A. Wilson. 2009. Geneious Pro. Version 4.8.5., ver. http://www.geneious.com. [ Links ]

Excoffier, L. and H. E. L. Lischer. 2010. Arlequin suite version 3.5: A new series of programs to perform population genetics analyses under Linux and Windows. Mol. Ecol. Res., 10: 564-567. [ Links ]

Ferreira H.D.O., A. N. Zerbini A.N. and S. Siciliano. 1995. Occurrence of crabeater and leopard seals in Southern Brazil. XI Biennial Conference on the Biology of Marine Mammals. Diciembre 1995. Orlando, USA. [ Links ]

Fyler, C. A., T. W. Reeder, A. Berta, G. Antonelis, A. Aguilar and E. Androukaki. 2005. Historical biogeography and phylogeny of monachine seals (Pinnipedia: Phocidae) based on mitochondrial and nuclear DNA data. J. Biogeogr., 32(7): 1267-1279. [ Links ]

Giraldo, A., M. I. Críales-Hernández, M. Jeréz-Guerrero and D. F. Mojica-Moncada. 2019. Mesozooplankton biomass and epipelagic copepod assemblages in the Gerlache Strait (Antarctica) during the 2015 austral summer. Bol. Invest. Mar. Cost., 48(1): 9-26. [ Links ]

Guerrero, A., J. Negrete, M. Márquez, J. Menucci, K. Zaman and T. Rogers. 2014. Fatty acid composition suggests leopard seals are no longer apex predators in the Western Antarctic Peninsula ecosystem. XXXIII Scientific Committee on Antarctic Research (SCAR). Open Science Conference. Agosto 2014. Auckland, New Zealand . [ Links ]

Hall-Aspland, S. A. and T. L. Rogers. 2004. Summer diet of leopard seals (Hydrurga leptonyx) in Prydz Bay, Eastern Antarctica. Polar Biol., 27(12): 729-734. [ Links ]

Hall-Aspland, S. A. , T. L. Rogers and R. B. Canfield . 2005. Stable carbon and nitrogen isotope analysis reveals seasonal variation in the diet of leopard seals. Mar. Ecol. Prog. Ser., 305: 249-259. [ Links ]

Hall-Aspland, S. A. and T. L. Rogers. 2007. Identification of hairs found in leopard seal (Hydrurga leptonyx) scats. Polar Biol., 30(5): 581. [ Links ]

Hamilton, M. 2009. Population Genetics. John Wiley & Sons, Chichester, UK. 424 p. [ Links ]

Hiruki, L.M., M. K. Schwartz and P. L. Boveng. 1999. Hunting and social behaviour of leopard seals (Hydrurga leptonyx) at Seal Island, South Shetland Islands, Antarctica. J. Zool., 249, 97-109. [ Links ]

Hückstädt, L. 2015. Hydrurga leptonyx. The IUCN Red List of Threatened Species 2015: e.T10340A45226422, http://dx.doi.org/10.2305/IUCN.UK.2015-4.RLTS.T10340A45226422.enLinks ]

IPCC. 2014. Climate change 2014: Synthesis Report. Contribution of Working Groups I, II and III to the fifth assessment report of the Intergovernmental Panel on Climate Change. En: Pachauri, R. K.and L.A. Meyer (Eds.). IPCC. Geneva, Switzerland. 151 p. [ Links ]

Juri, E. 2017. Ocurrencia de focas (Mammalia, Carnivora, Phocidae) en Uruguay. Bol. Soc. Zool. Uruguay (2a época), 26(1): 30-36. [ Links ]

Kuhn, C. E., B. I. McDonald, S. A. Shaffer, J. Barnes, D. E. Crocker, J. Burns and D. P. Costa. 2006. Diving physiology and winter foraging behavior of a juvenile leopard seal (Hydrurga leptonyx). Polar Biol., 29: 303-307. [ Links ]

Laws, R.M. 1953. The seals of the Falkland Islands and dependencies. Oryx, 2: 87-97. [ Links ]

LeDuc, R. G., K. M. Robertson and R. L. Pitman. 2008. Mitochondrial sequence divergence among Antarctic killer whale ecotypes is consistent with multiple species. Biol. Lett., 4: 426-429. [ Links ]

Maddison, D. R. and W. P. Maddison. 2011. MacClade 4: Analysis of phylogeny and character evolution. Version 4.08a., http://macclade.orgLinks ]

Meade, J., M. B. Ciaglia, D. J. Slip, J. Negrete, M. E. I. Márquez, J Mennucci and T.L. Rogers. 2015. Spatial patterns in activity of leopard seals Hydrurga leptonyx in relation to sea ice. Mar. Ecol. Prog. Ser., 521: 265-275. [ Links ]

Mendes, C. R. B., V. M. Tavano, M. C. Leal, M. S. de Souza, V. Brotas and C. A. E. García. 2013. Shifts in the dominance between diatoms and cryptophytes during three late summers in the Bransfield Strait (Antarctic Peninsula). Polar Biol., 36: 537-547. [ Links ]

Mojica L., L. H. and A. Franco-Herrera. 2019. Zooplankton composition and taxonomic abundance from South Pacific until Antarctic Peninsula 2016-2017. Bol. Invest. Mar. Cost., 48(2): 119-142. [ Links ]

Mojica-Moncada, D. F., C. Cárdenas, J. F. Mojica-Moncada, D. Holland y G. Casassa. 2019. Estudio del Glaciar Lange y su impacto por cambio climático en la Bahía de Almirantazgo, Isla Rey Jorge, Antártica durante el verano austral 2018 - 2019. Libro de Memorias del XVIII Seminario Nacional de Ciencias y Tecnologías del Mar. Octubre 2019. Barranquilla, Colombia. 400-401. [ Links ]

Moura J., B. Di Dario and S. Siciliano. 2011.Occurrence of pinnipeds on the coast of Rio de Janeiro State, Brazil. Mar. Biodivers. Rec., 4: 1-10. [ Links ]

Negrete J., E. A. Depino, P. Carlini, J. G. Galliari, S. Leonardi, M. Bobinac, C. M. Loza, M. E. I. Márquez, J. A. Mennucci y T. Rogers. 2014. Fidelidad al sitio de muda de la foca leopardo (Hydrurga leptonyx) en costa Danco, Península Antártica. XXVII Jornadas Argentinas de Mastozoología. Noviembre 2014. Esquel, Provincia de Chubut, Argentina. [ Links ]

Pinedo M.C. 1990. Ocorrência de Pinípedes na costa brasileira. Garcia de Orta (Série Zoológica), 15: 37-48. [ Links ]

Rodríguez, D., R. Bastida, S. Morón, S. R. Heredia and J. Loureiro. 2003. Occurrence of leopard seals in northern Argentina. Lat. Amer. J. Aquat. Mamm., 2(1): 51-54. [ Links ]

Rogers, T. L. 2007. Age-related differences in the acoustic characteristics of male leopard seals Hydrurga leptonyx. J. Acoust. Soc. Amer., 122: 596-605. [ Links ]

Rogers, T. L. 2009. Leopard seal: Hydrurga leptonyx. 673-674. In: Perrin, W. F., Würsig, B. and J. G. M. Thewissen (Eds.). Encyclopedia of marine mammals, 2nd Ed. Academic Press. San Diego, USA. 1352 p. [ Links ]

Rogers, T. L. 2018. Leopard seal: Hydrurga leptonyx. 673-674. In: Würsig, B., J.G.M. Thewissen and K. Kovacs (Eds.). Encyclopedia of marine mammals, 3rd Ed. Academic Press. London, UK. 1190 p. [ Links ]

Rogers, T.L. and D.H. Cato. 2002. Individual variation in the acoustical behaviour of the adult male leopard seal, Hydrurga leptonyx. Behaviour, 139: 1267-1286. [ Links ]

Rosas F.C.W., L. C. Capistrano, A. P. Di Beneditto and R. Ramos. 1992. Hydrurga leptonyx recovered from the stomach of a tiger shark captured off Rio de Janeiro coast, Brazil. Mammalia, 56: 153-155. [ Links ]

Sanger, F. and A. R. Coulson. 1975. A rapid method for determining sequences in DNA by primed synthesis with DNA polymerase. J. Mol. Biol., 94(3): 441-446. [ Links ]

Silva K. G. 2004. Os pinípedes no Brasil. Ocorrências, estimativas populacionais e conservação. PhD Thesis. Fundação Universidade Federal do Rio Grande, Rio Grande, Brazil. 242 pp. [ Links ]

Slade, R. W., C. Moritz and A. Heideman. 1994. Multiple nuclear-gene phylogenies: application to pinnipeds and comparison with a mitochondrial DNA gene phylogeny. Mol. Biol. Evol., 11(3): 341-356. [ Links ]

Slade, R. W. , Moritz, C., A. R. Hoelzel and H. R. Burton. 1998. Molecular population genetics of the southern elephant seal Mirounga leonina. Genetics, 149(4): 1945-1957. [ Links ]

Slip, D. J., K. Green, H. R. Burton, P. J. Mitchell and M. A. R. K. Adams. 1994. Allozyme variation in the leopard seal, Hydrurga leptonyx. J. Aust. Mammal. Soc., 17: 1-5. [ Links ]

Southwell, C., K. Kerry, P. Ensor, E. J. Woehler and T. Rogers. 2003. The timing of pupping by pack-ice seals in East Antarctica. Polar Biol., 26(10): 648−652. [ Links ]

Thomas, J. A. and C. L. Golladay. 1995. Geographic variation in leopard seal (Hydrurga leptonyx) underwater vocalizations. 201-222. In: Kastelein, R. A., J.A. Thomas and P. E. Nachtigall (Eds.). Sensory Systems of Aquatic Mammals. De Spil Publishers, Woerden, The Netherlands. [ Links ]

Varela, M., E. Fernandez and P. Serret. 2002. Size-fractionated phytoplankton biomass and primary production in the Gerlache and south Bransfield Straits (Antarctic Peninsula) in Austral summer 1995-1996. Deep-Sea Res. Part II. Top. Stud. Oceanogr., 49(4-5): 749−768. [ Links ]

Vaughan, D., G. Marshall, W. Connolley, C. Parkinson, R. Mulvaney, D. Hodgson, J. C. King, C. J. Pudsey and J. Turner. 2003. Recent rapid regional climate warming on the Antarctic Peninsula, Clim. Chang., 60: 243-274. [ Links ]

Vinding, K., M. Christiansen, G. J. Hofmeyr, W. Chivell, R. McBride and M. N. Bester. 2013. Occurrence of vagrant leopard seals, Hydrurga leptonyx, along the South African coast. S. Afr. J. Wildl. Res., 43(1): 1-3. [ Links ]

Walker, T.R., I. L. Boyd, D. J. McCafferty, N. Huin, R. I. Taylor and K. Reid. 1998. Seasonal occurrence and diet of leopard seals (Hydrurga leptonyx) at Bird Island, South Georgia. Antarct. Sci., 10: 75-81. [ Links ]

Widholzer, F. L. 1982. Registro de uma nova espécie de mamífero para Brasil, Hydrurga leptonyx (Blainville) (Carnivora: Phocidae) . Resumos IX Congresso Brasileiro de Zoologia. February 1982. Porto Alegre, Brazil. 263. [ Links ]

Ximenez, A., P. C. Simões-Lopes y R. Praderi. 1987. Notas sobre mamíferos marinos de Santa Catarina e Rio Grande do Sul (Pinnipedia, Cetacea). Anais II Reunião de Trabalho de Especialistas em Mamíferos Aquáticos da América do Sul. August 1987. Rio de Janeiro, Brazil. 100-103. [ Links ]

Zhao, L., M. Castellini, T. Mau and S. Trumble. 2004. Trophic interactions of Antarctic seals as determined by stable isotope signatures. Polar Biol. 27, 368-373. [ Links ]

SUPPLEMENTARY MATERIAL

Table S1 Leopard seal (Hydrurga leptonyx) occurrences represented in Figure 1, on the Antarctic Peninsula as primary range, and in Oceania, South Africa, and South America as secondary range. For each occurrence, the country, locality, decimal latitude, decimal longitude, and study reference were included. 

Table S2 Relationship of the sample of each individual leopard seal (hydrurga leptonyx) collected on the danco coast with each haplotype identified by slade et al. (1994) and in this study. for each individual, ncbi sequence id, genbank accession number, haplotype name used in network plot (figure 2), sex, and study reference were included. 

Received: September 29, 2019; Accepted: November 24, 2020

*Autor de correspondencia: daliac.barraganbarrera@gmail.com

Creative Commons License This is an open-access article distributed under the terms of the Creative Commons Attribution License