SciELO - Scientific Electronic Library Online

 
vol.22 issue1Analysis, design and development of a software prototype for the administration of parking lotsWastes Flow from wastewater treatment in the industrial sector of Cali urban and periurban area, free trade zone of Palmira and Yumbo author indexsubject indexarticles search
Home Pagealphabetic serial listing  

Services on Demand

Journal

Article

Indicators

Related links

  • On index processCited by Google
  • Have no similar articlesSimilars in SciELO
  • On index processSimilars in Google

Share


Ingeniería y competitividad

Print version ISSN 0123-3033

Ing. compet. vol.22 no.1 Cali Jan./June 2020

https://doi.org/10.25100/iyc.v22i1.8429. 

Artículos

Water footprint: An effective tool for the challenge of water sustainability

Huella hídrica: Una herramienta eficaz para el desafío de la sostenibilidad del agua

Oscar I. Vargas-Pineda1 
http://orcid.org/0000-0002-6462-4264

Juan M. Trujillo-González1 
http://orcid.org/0000-0001-9612-4080

Marco A. Torres-Mora1 
http://orcid.org/0000-0002-3824-5412

1 Grupo de Investigación Gestión Ambiental Sostenible GIGAS. Instituto de Ciencias Ambientales de la Orinoquia Colombiana ICAOC. Facultad de Ciencias Básicas e Ingeniería. Universidad de los Llanos. Villavicencio, Colombia. Correo electrónico: oscar.vargas@unillanos.edu.co, jtrujillo@unillanos.edu.co, marcotorres@unillanos.edu.co


Abstract

Water is an indispensable liquid for subsisting as for the development of society. However, currently the availability of water refers to the world community, at the same time, to the physical and economic problems of the resource, reason why it is necessary that this resource has an efficient management of the way to satisfy the current needs, without compromising its use in the future. This article will present a conceptual analysis of the dynamics of the resource with the emphasis on scarcity, and the importance of integral management, around an indicator such as the water footprint, the view as an effective tool for decision making.

Keywords: Basin; Water footprint; Water management; Water scarcity

Resumen

El agua es un líquido indispensable tanto para subsistir como para el desarrollo de la sociedad. No obstante, actualmente la disponibilidad de agua preocupa a la comunidad mundial por la intensa aparición de escenarios de escasez física y económica del recurso. Razón por la cual, es necesario que este recurso tenga una gestión eficiente, de tal manera que satisfaga las necesidades actuales, sin comprometer su uso en el futuro. Este artículo, presentará un análisis conceptual de la dinámica del recurso con énfasis en la escasez, y la importancia de la gestión integral, alrededor de un indicador como la huella hídrica, vista como una herramienta eficaz para la toma de decisiones.

Palabras clave: Cuenca hidrográfica; Escasez hídrica; Gestión del agua; Huella hídrica

1. Introduction

Water is a limited natural resource used essentially for the subsistence of life and the development of society 1. According to FAO, living things can survive in scenarios of extreme food shortages, but not in the face of a water resource shortage 2. In this sense, water scarcity is one of the main concerns of leaders, academics and society in general. The demographic growth has generated an increase in the demand for water in quantity and quality for the direct use and production of food, fiber and other goods and services (3,4. Nowadays, the prevailing economic development model tends to lead the water resource along unsustainable paths 5, and even when it is considered a finite resource 6,7, its rational use is not promoted 8. Factors such as inefficient water use and current consumption habits hinder water sustainability and intensify socio-environmental conflicts in the territories 9,10. According to the World Health Organization (WHO) and the United Nations Children's Fund (UNICEF) 11, about 2.1 billion people lack enough and potable water in their homes, and the concern is even greater considering that a 55% increase in water requirements in anthropic activities is expected for the year 2050 12.

In Latin America, the situation is intensifying because countries have economic and technical limitations that make it difficult to have efficient basic supply and sanitation systems and have become fundamental factors that cause deterioration of surface and underground water resources close to urbanized centers of these countries 13,14. Colombia is a country with abundant water supply, fifth in the world with greater water wealth 15; However, in 2017, approximately 10% of the population did not have potable water supply systems or with minimum conditions for human use, just like wastewater improvement systems, they do not treat them in a 100 % 16, a situation that is caused by socio-cultural, political and limited technical capacity factors that hinder public investment 17,18. On the other hand, climate change has modified rainfall regimes generating long and / or short periods that complicate the scenarios of water scarcity in the territory 19,20.

Due to the above, it is necessary to have effective tools that facilitate decision making and improve water resource management 21,22, where it is necessary to consider demand / supply factors 23. So, a relatively new indicator emerges, called the Water Footprint (WF), which was introduced by the Dutchman Arjen Hoekstra in 2002 24, and which transcends mainly the term “virtual water” 25,26. In this way, the WF is defined as an indicator that determines the impact on the water resource, considering the consumption according to its use, which incorporates, within its methodology, aspects of sustainability, based on the natural supply of the resource, the economy and society 27. The WF, quantifies the volume and, in addition, analyzes the pollutant load along the supply chain, especially applied in the study at the river basin level 28,29,30. Finally, this article aims to analyze the concept of WF as an effective tool for decision-making in pursuit of water sustainability.

2. Methodology

The research that was conducted is exploratory, descriptive and analytical, taking into account that secondary information was collected from scientific articles and research reports available from sources such as databases (Science Direct and Springer) and academic search portals (Google scholar, Researchgate), which were selected and categorized according to the space-time approach of the water footprint indicator, with the purpose of performing a critical analysis of the conceptual application of the indicator and its contribution to the development of the sustainability in socio-economic activities, taking into account a integral approach of the components; natural which considers the implications of water use in the dynamics of ecosystems, economic that refers to the need for efficient use of water for its productivity and social that is associated with people's water use and resource competence with other sectors. This analysis contributes in the decision making regarding the integral management of the water resource 31,32. In such a way that perspectives and challenges are posed in subsequent investigations.

3. Development

It is necessary to emphasize that WF is an indicator of the use of fresh water, which refers not only to the direct use of water from a process of consuming and / or producing, but also to the indirect use of water 28. In addition, WF is a multidimensional indicator of water use, which in addition to the type used, indicates the time and place where the resource is consumed 33. WF is divided into three components, blue WF, green WF and gray WF. Thus, blue WF refers to the water that is consumed and / or incorporated into the process of surface and underground water sources, which has the characteristic of not returning to the source of collection or returning in a long period of time 34. The green WF represents the water stored in the form of moisture in the soil from precipitation and which is mainly consumed by the water requirements of agricultural crops 35,36. Finally, the gray WF refers to the quality of the water resource. It represents the theoretical volume of water required by a water body to dilute a pollutant load to the limit values ​​allowed by environmental authorities 37,38.

3.1. Methodological proposals

The evaluation of WF has several proposed methods; Hoekstra 27, considers WF as the total consumption of fresh water that is required in a given process. Others, such as Deurer 39, propose analyzing the hydrological flows of both exits and storage changes with respect to WF. There are also those who propose the evaluation of the environmental impacts associated with the use of the resource 40. Some others use the LCA product life cycle approach to address WF 41. However, the two most relevant approaches to the evaluation of WF are: the first, which refers to the international guideline ISO 14046, which suggests the application of WF with an ACL approach 42, and the second, of greater application in the world, developed by the Water Footprint Network (WFN) that proposes the volumetric analysis of the use for water consumption 28) and develops a methodology for the evaluation of WF that considers the following four stages 27,28: 1. Establishing objectives and scope, which aims to determine what type of WF, place and period of time to evaluate, taking into account the resources of the study. 2. Water footprint accounting, refers to the collection of data and calculations of WF through the application of methodologies adjusted to the real context of the study 28,43. 3. Evaluation of sustainability of the water footprint, to carry out a sustainability analysis, detailed studies are necessary and in parallel to the results of the WF, social and economic aspects in the territory where the study is generated. Among the environmental criteria are the flows and environmental requirements, which are essential to maintain the conditions of the aquatic and terrestrial ecosystems associated with water resources 28,44. 4. Formulation of response strategies, it is the phase where the base information is compiled to make appropriate and most beneficial decisions about sustainable water management 28,45.

3.2. Water footprint and its relationship with environment

The water footprint homologous to the ecological footprint, estimates the appropriation of natural water capital in a territory, with the purpose of meeting the needs of the population 46. That is why, when assessing the WF, it is necessary to know the available water supply, taking into account that in order to conserve the natural balance, an ecological flow that ranges between 30 and 50% of the natural water supply must be considered 47.For this reason, the WF analysis is complemented with water stress indices and pollution level 33. However, these indicators require greater verification, standardization and detail, because they do not integrate determining factors in water sustainability such as the appropriation of the resource, understood not only as the use of water, but the will of the different demanding actors of the resource in contributing to the conservation of water systems and establishing an equitable distribution of water 48,27. As with WF, which directly and indirectly links the use of water of the different anthropic activities in a river basin and its influence on the natural processes of the hydrological cycle, which are finally those that alter temporal and spatial conditions of the availability of the resource 49,50. Reason why, studies have been carried out at the basin level in India where an WF of 2.4 x106 m3/ km2 was calculated 51, in China of 0.6 x106 m3/ km2 (52, in Chile of 0.06 x106 m3/ km2 (53) and Colombia of 0.18 x106 m3/ km2 (54, these WF values are influenced by the spatio-temporal climate variability, so in this way, it is stated that the abundance of water does not necessarily guarantee the availability of water in the basins, but it does determine the importance of a redistribution of water based on anthropic activities and water supply available in the territories. Considering that quantifying the water consumed in quantity (blue WF and green WF) and quality (gray WF), of the strategic ecosystems in a given place and time, allows to generate important information to improve decision making in the water conservation and distribution that guarantees its sustainability 55,56. However, Li 52 ensures that the participation of multiple jurisdictions in the basins makes it difficult to organize these natural units, as evidenced in a study conducted in the Guadiana basin that is part of Portugal and Spain 57 or in the Nile river basin that is between Egypt and Ethiopia 58, where the distribution of the resource is hampered due to the water planning policies of each country and differences in water availability in the upper and lower basins.

3.3. Water footprint and its relationship with society

The water shortage due to the deterioration in its quality and / or limited supply available caused by the dry years, difficulties the development of industrial, agricultural and domestic activities 59,60, and poses conflict scenarios, due to the use of water, of these sectors in a territory 61,62. The WF is an indicator that allows to evaluate the natural, economic and social sustainability of the water resource in a specific geographical area, and therefore, they play a fundamental role in the prevention and resolution of socio-environmental conflicts, associated with the use of the water resource 63,64. Delgado 65 suggests that the inclusion of this indicator, as a water management strategy, allows communities to associate the relevance of efficient use of water resources in their territories, which is why WF is being used worldwide to improve water management in the different anthropic activities, which require the resource 66,67. In addition, WF has been used in food safety studies as shown in Hong Kong where water use was evaluated according to the diets of the population with the purpose of determine critical or unsustainable diets, also, this study allowed to identify a decrease in per capita consumption of 355 to 326 l/day in two years by responsible consumption policies in this country 68.

3.4. Water footprint and its relationship with economy

In organizations and / or productive systems, the WF is an indicator that allows analyzing and evaluating the way in which goods and services are consumed, produced and sold, which demand water resources 69. Studies have been carried out in agriculture; in rice crops such as in China, an WF of 1.76 m3/kg 70) was calculated, in India of 0.980 m3/kg 71 and Thailand of 2.60 m3/kg 72, in this productive system the WF is determined by the supply of green water in the production area, the irrigation system, crop variety and agrochemicals applied. On the other hand, the livestock sector; as occurs in the production of fish in Colombia where it can range between 6.19 and 19.85 m3/kg of fish depending on the variety 73, while in cattle farming for milk production for example in Colombia an WF of 1.9 m3/l is estimated 74 and in Ireland of 0.7 m3/l 75, the WF in these productions is highly influenced by the gray water that these productions generate, and the indirect consumption of water in the production of pastures for the feeding of the animals. Finally in the manufacturing industry; as for example in the production of cement an WF 2.2 m3/kg 76) was calculated, in wines of 1.84 m3/l 77 and gazpachos of 0.58 m3/l 78, in this sector it is inferred that the processes of Transformation of the final product does not provide a high consumption of water, but the WF focuses mainly on the raw materials that are required to generate these products. Also, the need to ensure greater management of wastewater because gray WF is a critical point in the production of this sector. In order to ensure that the investors can identify and assess the risks associated with critical points of water use in the supply chain, and can determine the impact that it generates on water resources, product development and make decisions to reduce it 27,33,79. In addition, Vargas-Pineda 80 ensures that guaranteeing an optimal supply of water in quantity and quality, to the production processes, allows the productive sectors to be competitive, because they generate economic sustainability.

4. Conclusions

The Water Footprint is a determining indicator for decision-making in the face of comprehensive water management in a territory with anthropic intervention, because it allows dimensioning the impact caused by the use of water from human activities in a given territory and in a specific period of time, also recognizing the importance of strategic ecosystems, as the main suppliers of water resources. In addition, when evaluating the Water Footprint, from the perceptive of consumption, critical points can be identified and actions generated where different sectors with common water interests are involved, to guarantee the conservation and equitable distribution of the resource, mainly at the level of river basin.

5. Acknowledgements

The authors acknowledge the financial support provided by the Dirección General de Investigaciones DGI of the Universidad de los Llanos, within the framework of project C04-F02-002-2019 ‘‘Dinámica del agua en una cuenca con intensa presión antrópica; caso de estudio cuenca del Caño Quenane-Quenanito” and to the staff of the Instituto de Ciencias Ambientales de la Orinoquia Colombiana-ICAOC.

6. References

1. Garrick D, Hall JW. Water Security and Society: Risks, Metrics, and Pathways. Annu Rev Environ Resour. 2014;39:611-39. Doi: 10.1146/annurev-environ-013012-093817. [ Links ]

2. Food and Agriculture Organization of the United Nations (FAO). Exploring the concept of water tenure . Roma; 2016. (LAND AND WATER DISCUSSION PAPER). Report No.: 10. Available from: http://www.fao.org/3/a-i5435e.pdf. [ Links ]

3. Bocchiola D, Nana E, Soncini A. Impact of climate change scenarios on crop yield and water footprint of maize in the Po valley of Italy. Agric Water Manag . 2013;116:50-61. Doi: 10.1016/j.agwat.2012.10.009. [ Links ]

4. Ibidhi R, Hoekstra AY, Gerbens-Leenes PW, Chouchane H. Water, land and carbon footprints of sheep and chicken meat produced in Tunisia under different farming systems. Ecol Indic . 2017;77:304-13. Doi: 10.1016/j.ecolind.2017.02.022. [ Links ]

5. Vargas-Pineda O, Trujillo-González J, Torres-Mora, M. La economía verde: un cambio ambiental y social necesario en el mundo actual. Rev Investig Agrar y Ambient. 2017;8(2):175-86. Doi: 10.22490/21456453.2044. [ Links ]

6. Lander E. La economía verde: el lobo se viste con piel de cordero. 2011. 10p. Available from: https://www.tni.org/files/download/green-economy_es.pdf. [ Links ]

7. Karakul AK. Educating labour force for a green economy and renewable energy jobs in Turkey: A quantitave approach. Renew Sustain Energy Rev. 2016;63:568-78. Doi: 10.1016/j.rser.2016.05.072. [ Links ]

8. Pellicer-Martínez F, Martínez-Paz JM. The Water Footprint as an indicator of environmental sustainability in water use at the river basin level. Sci Total Environ. 2016;571:561-74. Doi: 10.1016/j.scitotenv.2016.07.022. [ Links ]

9. Jury WA, Vaux-Jr HJ. The Emerging Global Water Crisis: Managing Scarcity and Conflict Between Water Users. Adv Agron . 2007;95:1-76. Doi: 10.1016/S0065-2113(07)95001-4. [ Links ]

10. Lonergan SC. Water and Conflict: Rhetoric and Reality. In: Diehl P, Gleditsch NP, editors. Environmental Conflict An Anthology. 1st ed. New York: Taylor & Francis group; 2001. p. 16. Available from: https://www.taylorfrancis.com/books/e/9780429500794/chapters/10.4324/9780429500794-6. [ Links ]

11. United Nations Children's Fund (UNICEF), World Health Organization (WHO). Progress on Drinking Water, Sanitation and Hygiene: 2017 Update and SDG Baselines. 2017. p 110. Available from: https://www.unicef.org/publications/index_96611.html. [ Links ]

12. OECD. OECD Environmental Outlook to 2050: The Consequences of Inaction. OECD Publishing; 2012. Doi: 10.1787/9789264122246-en. [ Links ]

13. Thomas RM. Blending qualitative & quantitative research methods in theses and dissertations. Thousand Oaks, CA: SAGE Publications, Inc; 2003. Doi: 10.4135/9781412983525. [ Links ]

14. Zeng Z, Liu J, Koeneman PH, Zarate E, Hoekstra AY. Assessing water footprint at river basin level: a case study for the Heihe River Basin in northwest China. Hydrol Earth Syst Sci . 2012;16:2771-2781. Doi: 10.5194/hess-16-2771-2012. [ Links ]

15. AQUASTAT. Rome: Food and Agriculture Organization of the United Nations (FAO); 2011. [Consulted 15/10/2019]. Available from: http://www.fao.org/nr/water/aquastat/data/query/index.html?lang=en. [ Links ]

16. Departamento Administrativo Nacional de Estadística (DANE). Boletín Técnico - Encuesta nacional de calidad de vida (ECV) 2017. Bogotá; 2017. 32 p. Available from: https://www.dane.gov.co/files/investigaciones/condiciones_vida/calidad_vida/Boletin_Tecnico_ECV_2017-v2.pdf. [ Links ]

17. Bernal A, Rivas L, Peña P. Propuesta de un modelo de co-gestión para los Pequeños Abastos Comunitarios de Agua en Colombia. Rev Perfiles Latinoam. 2014;22(43). Doi: 10.18504/pl2243-159-2014. [ Links ]

18. Guzmán BL, Nava G, Bevilacqua PD. La calidad del agua para consumo humano y su asociación con la morbimortalidad en Colombia, 2008-2012. Biomédica. 2015;35(Sup2):177-90. Doi: 10.7705/biomedica.v35i0.2511. [ Links ]

19. Bedoya M, Contreras C, Ruiz F. Alteraciones del régimen hidrológico y de la oferta hídrica por variabilidad y cambio climático. In: Estudio Nacional del Agua. IDEAM; 2010. p. 282-320. Available from: http://documentacion.ideam.gov.co/openbiblio/bvirtual/021888/CAP7.pdf. [ Links ]

20. García MC, Botero AP, Quiroga FAB, Robles EA. Variabilidad climática, cambio climático y el recurso hídrico en Colombia. Rev Ing . 2012;(36):60-4. Doi: 10.1692427Friua.v0i36.136. [ Links ]

21. Biswas AK. Integrated Water Resources Management: A Reassessment. Water Int. 2004;29(2):248-56. Doi: 10.1080/02508060408691775. [ Links ]

22. Al-Saidi M. Conflicts and security in integrated water resources management. Environ Sci Policy . 2017;73:38-44. Doi: 10.1016/j.envsci.2017.03.015. [ Links ]

23. Beltrán MJ, Velázquez E. La ecología política del agua virtual y huella hídrica. Reflexiones sobre la necesidad de un análisis crítico de los indicadores de flujo virtuales de agua en la economía. Rev Econ Crítica. 2015;(20):44-56. [ Links ]

24. Chapagain A, Hoekstra A. Water footprints of nations. 2004. (Value of Water Research Report Series). Report No.: 16. UNESCO-IHE. Available from: https://waterfootprint.org/media/downloads/Report16Vol1_1.pdf. [ Links ]

25. Allan T. Fortunately there are substitutes for water: otherwise our hydropolitical futures would be impossible. In: Proceedings of the Conference on Priorities for Water Resources Allocation and Management. Southampton: Overseas Development Administration (ODA); 1992. p. 13-26. [ Links ]

26. Hoekstra A, Hung P. A quantification of virtual water flows between nations in relation to international crop trade. 2002. (Value of Water Research Report Series). Report No.: 11. UNESCO-IHE. Available from: https://waterfootprint.org/media/downloads/Report11_1.pdf. [ Links ]

27. Hoekstra AY, Chapagain AK, Aldaya MM, Mekonnen MM. The Water Footprint Assessment Manual: Setting the Global Standard. 1st ed. London: Earthscan; 2011. 228 p. Available from: https://waterfootprint.org/media/downloads/TheWaterFootprintAssessmentManual_2.pdf. [ Links ]

28. Hoekstra AY, Chapagain AK, Aldaya MM, Mekonnen MM. Water Footprint Manual: State of the Art 2009 Water Footprint Network, Enschede, the Netherlands; 2011, 131 p. Available from: https://waterfootprint.org/media/downloads/WaterFootprintManual2009.pdfLinks ]

29. Trujillo-González J, Tovar-Hernández N, Delgado-García S, Vargas-Ahumada D, Torres-Mora M. La huella hídrica en nuestras cuencas. 1. Guayuriba. 1a ed. Villavicencio: Universidad de los Llanos, Ecopetrol S. A.; 2015. 80 p. Available from: http://icaoc.unillanos.edu.co/index.php/publicaciones/category/8-proyecto-cuencas?download=108:la-huella-hidrica-en-nuestras-cuencas. [ Links ]

30. Pellicer-Martínez F, Martínez-Paz JM. Grey water footprint assessment at the river basin level: Accounting method and case study in the Segura River Basin, Spain. Ecol Indic. 2016;60:1173-83. Doi: 10.1016/j.ecolind.2015.08.032. [ Links ]

31. Hurtado J. Metodología de la investigación holística. 3a ed. Caracas: Fundación SYPAL; 2000. 613 p. [ Links ]

32. Ciro LL, Tabares JM. Metodología de la investigación holística. Una propuesta integradora desde las sociedades fragmentadas. Uni-pluriversidad. 2012;2(3):22-3. [ Links ]

33. Kuiper D, Zarate E, Aldaya M, Morrison J, Schulte P, Schenck R. Water Footprint and Corporate Water Accounting for Resource Efficiency. United Nations Environment Programme (UNEP); 2011. 184 p. Available from: http://www.unep.fr/shared/publications/pdf/DTIx1411xPA-WaterFootprint.pdf. [ Links ]

34. Lamastra L, Suciu NA, Novelli E, Trevisan M. A new approach to assessing the water footprint of wine: An Italian case study. Sci Total Environ. 2014;490:748-56. Doi: 10.1016/j.scitotenv.2014.05.063. [ Links ]

35. Mekonnen MM, Hoekstra A. A global and high-resolution assessment of the green, blue and grey water footprint of wheat. Hydrol Earth Syst Sci. 2010;14(7):1259-1276. Doi: 10.5194/hess-14-1259-2010. [ Links ]

36. Naranjo-Merino CA, Ortíz-Rodriguez OO, Villamizar-G RA. Assessing Green and Blue Water Footprints in the Supply Chain of Cocoa Production: A Case Study in the Northeast of Colombia. Sustainability. 2018;10(1):38. Doi: 10.3390/su10010038. [ Links ]

37. Mekonnen MM, Hoekstra A. The green, blue and grey water footprint of production and consumption. 2011. (Value of Water Research Report Series). Report No.: 50. UNESCO-IHE. Available from: https://waterfootprint.org/media/downloads/Report50-NationalWaterFootprints-Vol1.pdf. [ Links ]

38. Liu C, Kroeze C, Hoekstra A, Gerbens-Leenes W. Past and future trends in grey water footprints of anthropogenic nitrogen and phosphorus inputs to major world rivers. Ecol Indic. 2012;18:42-9. Doi: 10.1016/j.ecolind.2011.10.005. [ Links ]

39. Deurer M, Green SR, Clothier BE, Mowat A. Can product water footprints indicate the hydrological impact of primary production? - A case study of New Zealand kiwifruit. J Hydrol. 2011;408(3-4):246-56. Doi: 10.1016/j.jhydrol.2011.08.007. [ Links ]

40. Ridoutt BG, Pfister S. A revised approach to water footprinting to make transparent the impacts of consumption and production on global freshwater scarcity. Glob Environ Chang. 2010;20(1):113-20. Doi: 10.1016/j.gloenvcha.2009.08.003. [ Links ]

41. Berger M, Finkbeiner M. How to address water use in life cycle assessment. Journal of Sustainability. Sustainability. 2010;2(4):919-44. Doi: 10.3390/su2040919. [ Links ]

42. Vanham D, Hoekstra A, Bidoglio G. Potential water saving through changes in European diets. Environ Int. 2013;61:45-56. Doi: 10.1016/j.envint.2013.09.011. [ Links ]

43. Tillotson MR, Liu J, Guan D, Wu P, Xu Z, Zhang G, et al. Water Footprint Symposium: where next for water footprint and water assessment methodology? Int J Life Cycle Assess. 2014;19(8):1561-1565. Doi: 10.1007/s11367-014-0770-x. [ Links ]

44. Vidal-Abarca MR, Suárez-Alonso ML, Santos-Martín F, Martín-López B, Benayas J, Montes C. Understanding complex links between fluvial ecosystems and social indicators in Spain: An ecosystem services approach. Ecol Complex. 2014;20:1-10. Doi: 10.1016/j.ecocom.2014.07.002. [ Links ]

45. Boulay A-M, Hoekstra A, Vionnet S. Complementarities of Water-Focused Life Cycle Assessment and Water Footprint Assessment. Environ Sci Technol. 2013;47(21):11926-7. Doi: 10.1021/es403928f. [ Links ]

46. Chapagain AK, Hoekstra AY. Globalization of water: Sharing the planet's freshwater resources. 2008. 220. Blackwell Publishing, Oxford, UK. Available from: https://www.researchgate.net/publication/270745057_Globalization_of_Water_Sharing_the_Planet%27s_Freshwater_Resources. [ Links ]

47. Smakhtin V, Revenga C, Döll P. Taking into Account Environmental Water Requirements in Global-scale Water Resources Assessments. Colombo, Sri Lanka; 2004. (Comprehensive Assessment Research). Report No.: 2. Available from: https://www.protos.ong/sites/default/files/library_assets/W_MIL_E37_taking_account.pdf. [ Links ]

48. Ilaya-Ayza AE, Campbell E, Pérez-García R, Izquierdo J. La problemática de los sistemas de suministro de agua intermitentes. Aspectos generales. The issues of intermittent water supply. RIOC Rev Ing Obras Civiles. 2015;5:33-41. [ Links ]

49. Charlon V, Tieri M, Frank F, Engler P. La huella del agua en la producción primaria de leche en Argentina. In: Información técnica de producción animal 2016. Santa Fe: Instituto Nacional de Tecnología Agropecuaria (INTA); 2016. p. 10-15. Available from: https://inta.gob.ar/sites/default/files/inta_informacio_tecnica_produccion_animal_2016.pdf. [ Links ]

50. Llosa ZB. Problemática de los ciclos biogeoquímicos, hidrológico y de nutrientes en la meseta central de Costa Rica. Rev Posgrado y Soc. 2010;10(1):23-37. Doi: 10.22458/rpys.v10i1.1873. [ Links ]

51. Mali SS, Singh DK, Sarangi A, Parihar SS. Assessing water footprints and virtual water flows in Gomti river basin of India. Current Science. 2018;115(4):721-728. Doi: 10.18520/cs/v115/i4/721-728. [ Links ]

52. Li C, Xu M, Wang X, Tan Q. Spatial analysis of dual-scale water stresses based on water footprint accounting in the Haihe River Basin, China. Ecological indicators . 2018; 92: 254-267. Doi: 10.1016/j.ecolind.2017.02.046. [ Links ]

53. Novoa V, Ahumada-Rudolph R, Rojas O, Munizaga J, Sáez K, Arumí JL. Sustainability assessment of the agricultural water footprint in the Cachapoal River basin, Chile. Ecological indicators. 2019: 98, 19-28. Doi: 10.1016/j.ecolind.2018.10.048 [ Links ]

54. Builes-Cedula ED. Cuantificación y análisis de sostenibilidad ambiental de la huella hídrica agrícola y pecuaria de la cuenca del Río Porce [Doctoral dissertation]. Universidad Nacional de Colombia, Medellín; 2013. Available from: http://bdigital.unal.edu.co/10765/1/1017142094.2013.pdf. [ Links ]

55. Tovar-Hernández NA, Trujillo-González JM, Muñoz-Yáñez SI, Torres-Mora MA, Zárate E. Evaluación de la sostenibilidad de los cultivos de arroz y palma de aceite en la cuenca del río Guayuriba (Meta, Colombia), a través de la evaluación de huella hídrica. Orinoquia. 2017;21(1):52-63. Doi: 10.22579/20112629.394. [ Links ]

56. Schneir ER. La huella hi´drica como un indicador de sustentabilidad y su aplicacio´n en el Peru´. Saber y Hacer. 2015;2(1):32-47. [ Links ]

57. Aldaya MM, Llamas MR. Water footprint analysis for the Guadiana river basin. Delft, The Netherlands: UNESCO-IHE. 2008; 3. Available from: https://waterfootprint.org/media/downloads/Report35-WaterFootprint-Guadiana.pdf. [ Links ]

58. Sallam OM. Water footprints as an indicator for the equitable utilization of shared water resources:(Case study: Egypt and Ethiopia shared water resources in Nile Basin). Journal of African Earth Sciences. 2014:100, 645-655. Doi: 10.1016/j.jafrearsci.2014.08.007. [ Links ]

59. Calle EAD, Rivera HG, Sarmiento RV, Moreno P. Relaciones demanda -oferta de agua y el índice de escasez de agua como herramientas de evaluación del recurso hídrico colombiano. Rev Acad Colomb Ciencias Exactas, Físicas y Nat. 2008;32(123):195-212. [ Links ]

60. Gheewala SH, Silalertruksa T, Nilsalab P, Mungkung R, Perret SR, Chaiyawannakarn N. Water Footprint and Impact of Water Consumption for Food, Feed, Fuel Crops Production in Thailand. Water. 2014;6(6):1698-718. Doi: 10.3390/w6061698. [ Links ]

61. Madurga MRL. Los colores del agua, el agua virtual y los conflictos hídricos. In: Discurso Inaugural del año académico 2005-2006. Madrid: Revista de la Real Academia de Ciencias Exactas, Físicas y Naturales (RACSAM); 2005. p. 30. Available from: http://www.rac.es/ficheros/Discursos/DI_20080825_077.pdf. [ Links ]

62. Mamian CAM, Erazo XAR, Velasco SM. Huella hídrica de una finca ganadera lechera bajo las condiciones agroecológicas del Valle del Cauca. Biotecnol en el Sect Agropecu e Ind. 2016;14(2):47-56. Doi: 10.18684/BSAA(14)47-56. [ Links ]

63. Castro R, Monge E, Rocha C, Rodríguez H. La gestión del recurso hídrico. Biocenosis. 2007;20(1-2):36-45. [ Links ]

64. Dong H, Geng Y, Sarkis J, Fujita T, Okadera T, Xue B. Regional water footprint evaluation in China: A case of Liaoning. Sci Total Environ. 2013;442:215-24. Doi: 10.1016/j.scitotenv.2012.10.049. [ Links ]

65. Delgado-García S, Trujillo-González J, Torres-Mora M. La huella hídrica como una estrategia de educación ambiental enfocada a la gestión del recurso hídrico: ejercicio con comunidades rurales de Villavicencio. Rev Luna Azul. 2013;(36):70-7. [ Links ]

66. Ercin AE, Hoekstra A. Water footprint scenarios for 2050: A global analysis. Environ Int. 2014;64:71-82. Doi: 10.1016/j.envint.2013.11.019. [ Links ]

67. Lopez LIF, Bautista-Capetillo C. Green and Blue Water Footprint Accounting for Dry Beans (Phaseolus vulgaris) in Primary Region of Mexico. Sustainability. 2015;7(3):3001-16. Doi: 10.3390/su7033001. [ Links ]

68. Vanham D, Gawlik BM, Bidoglio G. Cities as hotspots of indirect water consumption: The case study of Hong Kong. Journal of Hydrology . 2019; 573: 1075-1086. Doi: 10.1016/j.jhydrol.2017.12.004. [ Links ]

69. Hoekstra A. A critique on the water-scarcity weighted water footprint in LCA. Ecol Indic. 2016;66:564-73. Doi: 10.1016/j.ecolind.2016.02.026. [ Links ]

70. Xinchun C, Mengyang W, Rui S, La Z, Dan C, Guangcheng S, Shuhai T. Water footprint assessment for crop production based on field measurements: A case study of irrigated paddy rice in East China. Science of the Total Environment. 2018;610:84-93. Doi: 10.1016/j.scitotenv.2017.08.011. [ Links ]

71. Chapagain AK, Hoekstra AY. The blue, green and grey water footprint of rice from production and consumption perspectives. Ecol Econ 2011; 70 (4), 749e758. Doi: 10.1016/j.ecolecon.2010.11.012. [ Links ]

72. Shrestha S, Chapagain R, Babel MS. Quantifying the impact of climate change on crop yield and water footprint of rice in the Nam Oon Irrigation Project, Thailand. Science of the Total Environment. 2017: 599, 689-699. Doi: 10.1016/j.scitotenv.2017.05.028. [ Links ]

73. Pérez-Rincón MA, Hurtado IC, Restrepo S, Bonilla SP, Calderón H, Ramírez A. Water footprint messure method for tilapia, cachama and trout production: study cases to Valle del Cauca (Colombia). Ingeniería y competitividad. 2017; 19(2): 115-126. Doi: 10.25100/iyc.v19i2.5298. [ Links ]

74. Mamian CA, Ximena Erazo A, Velasco S. Huella hídrica de una finca ganadera lechera bajo las condiciones agroecológicas del Valle del Cauca. Biotecnología en el Sector Agropecuario y Agroindustrial. 2016; 14(2): 47-56. Doi: 10.18684/BSAA(14)47-56. [ Links ]

75. Murphy IJ, de Boer M, van Middelaar CE, Holden NM. Shalloo L, Curran TP, Upton J. Water footprinting of dairy farming in Ireland. J Clean Prod. 2017; 140, 547-555. Doi: 10.1016/j.jclepro.2016.07.199. [ Links ]

76. Hosseinian SM, Nezamoleslami R. Water Footprint and Virtual Water Assessment in Cement Industry: A Case Study in Iran. J Clean Prod. 2018;172, 2454-2463. Doi: 10.1016/j.jclepro.2017.11.164. [ Links ]

77. Ene SA, Teodosiu C, Robu B, Volf I. Water footprint assessment in the winemaking industry: A case study for a Romanian medium size production plant. J Clean Prod. 2013: 43, 122-135 Doi: 10.1016/j.jclepro.2012.11.051. [ Links ]

78. Ibáñez GR, Ruíz JM, Sánchez MR, López JC. A corporate water footprint case study: The production of Gazpacho, a chilled vegetable soup. Water resources and industry. 2017; 17: 34-42. Doi: 10.1016/j.wri.2017.04.001. [ Links ]

79. Lambooy T. Corporate social responsibility: sustainable water use. J Clean Prod. 2011;19(8):852-66. Doi: 10.1016/j.jclepro.2010.09.009. [ Links ]

80. Vargas-Pineda Ó, Trujillo-González J, Torres-Mora M. Análisis de la inclusión de aspectos ambientales en microempresas agroindustriales de la ciudad de Villavicencio, Colombia. Prod Limpia. 2017;12(1):115-23. Doi: 10.22507/pml.v12n1a12. [ Links ]

Received: August 20, 2019; Accepted: December 11, 2019

Creative Commons License This is an open-access article distributed under the terms of the Creative Commons Attribution License