SciELO - Scientific Electronic Library Online

 
vol.22 número2Antagonismo de rizobacterias promotoras del crecimiento vegetal contra el agente causal de la marchitez vascular del tomateReactores Bioquímicos Pasivos: Una alternativa biotecnológica para la remediación de drenajes ácidos de mina índice de autoresíndice de materiabúsqueda de artículos
Home Pagelista alfabética de revistas  

Servicios Personalizados

Revista

Articulo

Indicadores

Links relacionados

  • En proceso de indezaciónCitado por Google
  • No hay articulos similaresSimilares en SciELO
  • En proceso de indezaciónSimilares en Google

Compartir


Revista Colombiana de Biotecnología

versión impresa ISSN 0123-3475

Rev. colomb. biotecnol vol.22 no.2 Bogotá jul./dic. 2020  Epub 18-Feb-2021

https://doi.org/10.15446/rev.colomb.biote.v22n2.79623 

ARTÍCULOS/INVESTIGACIÓN

Selection of somaclonal variants of maracuyá (passiflora Edulis var Flavicarpa. Deneger) tolerants to water deficit

Selección de variantes somaclonales de maracuyá (Passiflora edulis var flavicarpa. Deneger) tolerantes a déficit hídrico

Iván Darío Loaiza Campiño* 

Neftalí Mesa López** 

Andrés Mauricio Villegas Hiencapié*** 

* Docente Ingeniería en Agroecología, Instituto Educación a Distancia (IDEAD) Universidad del Tolima Colombia, ORCID: 0000-0003-4873-724X. idloaizac@ut.edu.co.

** Docente Departamentos de Biologia, Facultad de Ciencias. nmesa@ut.edu.co. Grupo de investigación GEBIUT, Universidad del Tolima. Colombia.

*** Investgador Fundación Local Partners. Manizales. Colombia. ORCID: 0000-0002-3903-3702. andresvillegas75@gmail.com.


ABSTRACT

Climate change will have an impact on the Colombian agricultural sector, by 2050 increases in temperature and distribution of erratic rainfall are expected. Passion fruit cultivation does not tolerate water deficit, it reduces flower induction, generates fruit drop and defoliation. To tackle this problem, somaclonal variants (VS) of passion fruit were selected in-vitro, seeking tolerance to water deficit. Four phases were developed: I) callogenesis, II) direct and indirect organogenesis, II) Induction and evaluation of the water deficit with Polyethylene glycol 6000 (PEG 6000) and IV) in vitro selection of VS by morphometric measurements, chlorophyll and total sugars contents. Differences in callogenesis were found with different concentrations of 2,4-D, the concentration of 2 mg L-1 presented better results producing calluses in less time and in greater quantity (8 days, 90% of the leaf area). In indirect and direct organogenesis the medium MS + ANA + BAP (0.3: 0.6), showed significant statistical differences with respect to other means, for the variables root length (15.14 cm), stem (16.72 cm) and leaves ( 14.51 cm) and root thickness (0.76 cm) stem (1.25) and leaf width (6.75). The influence of PEG 6000 showed significant differences, the treatment with 30 g L-1 showed the smallest leaf width, the greatest width was found in 25 g L1. Statistical differences were found in chlorophyll levels and total sugar contents, the highest contents were recorded in the VS 25VS1, showing the possibility of obtaining seedlings tolerant to the water deficit of passion fruit by inducing somaclonal variation.

Key words: genetic variability; callogenesis; water stress; genetic improvement

RESUMEN

El cambio climático tendrá impactos en el sector agropecuario colombiano, para el 2050 se prevén aumentos de temperatura y distribución de lluvias erráticas. El cultivo de maracuyá no tolera el déficit hídrico, este disminuye la inducción floral, genera caída de frutos y defoliación. Para abordar esta problemática se seleccionaron in-vitro variantes somaclonales (VS) de maracuyá, buscando tolerancia al déficit hídrico. Se desarrollaron cuatro fases: I) callogénesis, II) organogénesis directa e indirecta, III) Inducción y evaluación del déficit hídrico con Polientilenglicol 6000 (PEG 6000) y IV) selección in vitro de VS por mediciones morfométricas, contenidos de clorofila y azúcares totales. Se hallaron diferencias en callogénesis con diferentes concentraciones de 2,4-D, la concentración de 2 mg-L-1 presentó mejores resultados produciendo callos en menor tiempo y en mayor cantidad (8 días, 90% del área foliar); en organogénesis indirecta y directa el medio MS + ANA + BAP (0.3:0.6), mostró diferencias estadísticas significativas respecto a otros medios, para las variables longitud de raíz (15.14 cm), tallo (16.72 cm) y hojas (14.51 cm) y grosor de raíz (0.76 cm) tallo (1.25) y ancho de hojas (6.75). La influencia de PEG 6000 mostró diferencias significativas, el tratamiento con 30 g-L-1 mostró menor ancho de hojas, el mayor ancho se encontró en 25 g-L-1. Se hallaron diferencias estadísticas en niveles de clorofila y contenidos de azúcares totales, los mayores contenidos se registraron en el VS 25VS1, mostrando la posibilidad de obtener plántulas tolerantes al déficit hídrico de maracuyá mediante la inducción de variación somaclonal.

Palabras claves: variabilidad genética; callogénesis; estrés hídrico; mejoramiento genético

INTRODUCTION

The economic importance of passion fruit (Passiflora eNulis cv flavicarpa Deneger) is given by its consumption as a fresh fruit, in the making of essences and make up, due to the content of vitamin C and minerals. These rea-sons have permitted its use as dietary complement (Cauz-Santos et al., 2017; Claro et al., 2018). In Colombia in 2016, 59.690 Ton of passion fruits were produced, distributed in 7888 ha; having Meta (1.513 ha), Antioquia (1.410 ha) and Huila (1.402 ha) as the main producing departments (Departamento de Administrativo Nacional de Estadística, 2016).

By 2050 in Colombia, significant increases of temperature, more erratic rainfall and higher prevalence of plagues and diseases are expected (Lau et al., 2011), it is estimated that temperature would increase 2.5 °C; with contrasting implications in different departments of the country.

Looking forward to attending these projections, it is necessary to develop climatically-intelligent crops, where vegetable genetic enhancements come as an alternative to obtain varieties with tolerance to limit factors such as stress for water deficit (Araus & Kefauver, 2018).

Passion fruit has been reported as a crop that does not tolerate water deficit (Carr, 2013) when changing the ecophysiology of the plant. Similarly, Fischer & Casierra-Posada, (2009) establish the needs of the plant for the conditions of Colombia in terms of altitudinal range, soils, weather and handling. It is a diploid plant (2n=18), non-self-compatible and requires of insects for its pollination (Munhoz et al., 2018), which reduces its genetic variability through time (Cerqueira-Silva et al., 2014).

In-vitro growing has been used to obtain plants resistant to drought, from somaclonal variants (SV) and in-vitro selection. These methods are based on obtaining and inducing genetic variation among the cells, tissues and/ or organs in the plants grown and regenerated (Rai et al., 2011). This strategy has been used in crops such as sorghum (Tsago, Andargie & Takele, 2014), sugar cane (Kumar, et al., 2014) wheat (Chachar et al., 2014), banana (Marssaro et al., 2017).

Polyethylene glycol (PEG), has been used in studies of tolerance mechanisms (Tsago et al., 2014), in the dis-crimination of genotypes (George, Jatoi, & Siddiqui, 2013), in the in-vitro selection of explants and SV (Verma et al., 2013), in the test of rice to water (Eslami et al., 2018), the goal of this research was to select in-vitro somaclonal variants (SV) of passion fruit (Passiflora eNulis var flavicarpa Deneger) tolerant to water deficit using polyethylene glycol.

MATERIALS AND METHODS

The study was carried out in the Plant Protection Laboratory - GEBIUT from University of Tolima (Ibagué, Colombia). Plant material was collected in 2014 in the Municipality of Dolores - Tolima (geographic coordinates 3°47' 3.64" N/ -75°02'74.8"W) in commercial plantations of passion fruit (Sistema de informacion sobre biodiversidad de Colombia, 2018). The material collected was introduced in the in-vitro germoplasm bank of the GEBIUT Laboratory.

The research was done in four stages as follows: Phase I: callogenic; Phase II: direct and indirect organogenic; Phase III: water stress induction, and Phase IV: in-vitro selection.

Phase I: genetic variability induction in three segments of foliar tissues (base, mid and apical), using the MS culture medium (Murashige & Skoog, 1962) with variations in the concentrations of 2,4-D (0, 1, 2 and 4 mg-L-1), planting 20 repetitions per each concentration and testing the percentage of callous generated by foliar segment during four weeks after planting.

Phase II indirect and direct organogenesis: Once the callous were induced, these were planted in an MS + BAP + ANA medium (relations 0.6:0.3 and 0.3:0.6) and MS + KINETIN + ANA (relations 0.2:0.7 and 0.7:0.7). As variable answers were obtained length, thickness, number of roots and stems as well as length, width, and number of leaves and wet weight of plants. These organogenic media were used in the stage of water stress.

Phase III: for water stress induction was used polyethylene glycol (PEG) 6000, used in in-vitro water deficit studies, using variations in the concentration of PEG (0,20, 25 and 30 g-L-1 equivalent 0; -0.05; -0.06 and -0.07 MPa of water retention according to García et al., (2015) and similar to the reported for Nath et al., 2004, over the best organogenic medium of phase. The length and thick-ness variables of roots, and length and width of leaves were used as morphometric markers; and as physicochemical markers were used the levels of chlorophyll using a CCM-300 Opti-Sciences® equipment, by reading the double wavelength at 700 nm - 710 nm and 730 nm -740 nm and total sugars using the Dubois, M., (1956) method, using glucose as pattern (1.01 mg mL) and absorbance reading at 490 nm in a BIO-RAD Smatspec 3000® spectrophotometer, in SV with a growth of 6 months and submitted to water stress for one month.

Phase IV: In vitro selection of plants with the best response against the water deficit generated by PEG. In this phase, the SV plants with the best performance in terms of morphometric measurements, and levels of chlorophyll and total sugars were selected.

Statistical Analysis: A completely random, experimental design was used; and to determine statistical significance of each of the variables measured, was carried out a one-way variance analysis for each phase of the test and per variable group, in case of showing significant differences (test F to 0.05), it was proceeded to make comparison tests of mean minimum significant difference (DMS) to 0.05.

RESULTS AND DISCUSSION

Phase I. Statistical differences were found among the concentrations of 2,4-D in the production of callous and no differences were found among the segments of foliar tissue in the production of callous. The first tissue to make callous was the base segment with petiole. The MS medium plus 2,4-D (4 mg-L-1) produced callous in less time (8 days) compared to the other treatments, but after four weeks, it was the treatment with the highest death rate of callous. MS treatment with 2,4-D (2 mg-L-1) produced a higher quantity of callous two weeks after planting and remained healthy after four weeks in 95% of the segments planted initially.

Out of 160 tissues with callous, only 3 generated indirect organogenesis, two of them stopped their growth and one had full formation with roots, stems and leaves. The regenerated callous was a base segment of foliar tissue coming from the MS + 2,4-D (2 mg-L-1) medium. Given the restrictions of vegetable material, this plant was used in massive multiplication until reaching 60 plants for the next phase.

Phase II. Variance analysis for the response variables of phase II showed significant differences among the treatments where the MS + ANA + BAP (0.3:0.6) medium showed the best averages to the root length (15.14 cm), stem (16.72 cm) and leaves (14.51 cm) and root thick-ness (0.76 cm) stem (1.25) and width of leaves (6.75) (Table 1).

Table 1 Averages of morphometric variables for in-vitro organogenic growth médiums of SV passion fruit (phase II) 

MEDIUM ROOT STEM LEAVES
LENCTH THICKNESS LENCTH THICKNESS LENCTH VVIDTH
A+B (0.3:0.6) 15.14 BC 0.76 C 16.72 5 1.25 A 14.51 BC 6.75 BC
A+B (0.6:0.3) S.34 AB 0.63 BC '3.-6 A 1.09 A 14.19 BC 7.43 C
K+A (0.2:0.7) 20.59 C 0.53 AB 14.68 AB 1.10 A 12.35 B 6.25 B
K+A 10.7:0.7. -2.23 \ 0.23 A 10.64 A 1.03 A 9.03 A 4.26 A

A= Naphtalene acetic Acid. B= Benzylaminopurine. K=Kinetin.

Averages with the same letter do not show significant differences (DMS 0.05)

These results differ from the ones found by Medina et al., (2014) which report that the mix ANA+BAP, did not stimulate radicular growth in tobacco seedlings.

The increase of thickness in roots, also known as secondary growth, is stimulated by the right combination of auxins and cytokinins. This behavior is described as well by Schaller, Bishopp & Kieber, (2015). Statistical differences were found in the stem length and leaf width variables. These results match what was found by Manjarrés-Hernández & Perea-Dallos, (2012) in gulupa, a lesser passion fruit (Passiflora edulis Sims).

Phase III. Morphometric measurements of SV roots put under water stress with PEG 6000 in the four concentrations showed significant differences, concentration mediums of PEG 20 and 25 g-L-1 had the best results in the increase of root thickness with 0.69 and 0.58 cm respectively. Seedlings responded to water stress increasing root thickness, except in the control treatment (0,36 cm ) and the mediums with the highest concentration of PEG 30 g-L-1 0.52 cm (Table 2 and Figure 1). similar results are reported by Albiski et al., (2012) in potato, where in a 4% concentration of stressing agent, some seedlings in-creased length and thickness of roots. The treatment with the least influence in the increase of root thickness of passion fruit SV corresponded to the control.

Table 2 Development averages of some vegetable organs in passion fruit SV in function of PEG concentration used as agent of water déficit. Averages with the same letter do not show significant differences (DMS 0.05). 

PEG ROOT STEM LE4VES
LENCTH THICKNESS LENCTH THICKNESS LENCTH VVIDTH
0 8.30 AB 0.36 A 12.67 A 1.16 A 9.71 A 5.32 A
20 18.16 B 0.69 B 15.64 A 1.19 A 15.35 B 7.19 B
25 4.01 A 0.58 B 13.33 A 1.13 A 14.51 B 7.35 B
30 10.87 AB 0.52 AB 13.55 A 1.04 A 10.51 A 4.83 A

Figure 1 Longitudinal growth comparison of passion fruit SV roots in four concentration of root PEG and organogenics médiums, notice root growth and thickness concerning the control. A. Control treatment, B, C and D, Organogenic médium with PEG 6000 in concentrations of (0, 20, 25 and 30 g/l). 

Influence of PEG in the size of leaves of passion fruit SV showed significant differences, where the treatment with the highest concentration (30 g-L-1) showed the least leaf width (Table 2). The highest width was found in the con-centration of 25 g-L-1 and similar to 20 g-L-1. This shows that PEG at 30 g-L-1, generated negative impacts in tis-sues, especially on leaf growth, similar to what was reported by Hassan et al., 2004, Albiski et al., (2012) and Loaiza & Mesa (2019). As for the number of leaves, it is observed that the treatment of PEG 20 g-L-1 was where the highest amount of leaves was generated, having statistically significant differences with the remaining treatments (Figure 2).

Figure 2 Comparison of leaves produced under water stress in passion fruit SV, notice the growth of leaves in PEG 20 y 25 g-L"1 treatment. A. Control treatment, B, C and D, Organogenic médium with PEG 6000 in concentrations of (0, 20, 25 and 30 g/l). 

Chlorophyll (F=6.89**) and total sugar levels (F=59.90**) in the SV according to the concentration of PEG showed highly significant differences. Highest chlorophyll contents and sugars were recorded newly to the 25VS1 seedling in treatment PEG 25 g-L-1, Table 3 and figures 2 and 3.

Table 3 Chlorophyll levels and Total Sugar Levels in Somaclonal variants of P. edulis in medium with different concentrations of PEG. 

Seedling Total Sugars (mg Equívalent to glucose/g dry vegetable) Chlorophyll (mg m2)
25VS1 71.55 G 425.35 E
25T2 17.09 BCD 187.35 CD
0VS2 30.56 E 326.68 DE
0VS1 18.28 CD 310.02 DE
20T2 41.87 F 320.68 DE
30T2 11.12 ABC 231.68 CDE
25VS2 7.57 AB 209.02 CD
30T1 20.58 DE 139.35 CD
OTESTIGO 14.52 BCD 185.35 CD
0VS3 14.33 ABCD 215.24 CD
0VS4 14.52 BCD 185.35 CD
20T4 14.52 BCD 185.35 CD
20VS3 14.52 BCD 185.35 CD
25T4 14.52 BCD 185.35 CD
25VS3 14.52 BCD 185.35 CD
30T4 14.52 BCD 185.35 CD
30VS3 14.52 BCD 185.35 CD
25T3 18.42 CD 115.35 ABCD
20VS1 17.69 BCD -32.32 AB
30VS1 8.50 ABC 155.35 BCD
30T3 9.13 ABC 181.35 BCD
25T1 14.65 BCD 1.35 AB
20T1 6.15 A 176.68 BCD
30VS2 10.73 ABC -79.65 A
20YS2 11.41 ABCD -43.65 AB
20T3 8.08 ABC 60.35 ABC

Averages with the same letter do not show significant differences (DMS 0,05)

Figure 3 Somaclonal variants of passion fruit. A. SV 25VS1 with the highest total sugars and Chlorophyll con-tents. B. 20T1 lowest total sugar contents, and C. VS 30VS2 lowest chlorophyll contents respectively. 

Phase IV. For phase IV, the contents of total sugars and chlorophyll levels in SV seedlings showed significant differences. It was found that the highest content of total sugars and chlorophyll levels were in SV 25VS1 with 71.55 mg equivalent to glucose/g dry vegetable and 425.35 mg m-2 (table 3 and figure 3), which corresponds to the first SV planted in the culture medium MS + ANA + BAP + PEG 25 g-L-1, a medium with high levels of water retention. Similar results are reported by Moreno-Bermúdez et al., (2017), who found high levels of chlorophyll in in-vitro banana seedlings submitted to water deficit using PEG (Table 3).

In contrast, plant 25VS2, despite coming from the same callous of seedling 25VS1, showeds the lowest levels of total sugars with 7.57 mg, which would indicate genetic variability of the materials planted and exposed to the stressing agent, this is a promising plant for possible plant breeding programs at the University of Tolima.

The lowest level of chlorophyll was found in the seedling 30VS2 (-79.65 mg m2), corresponding to the second SV group planted in the stressing medium containing PEG 30 g-L-1, the highest concentration of the stressing agent (Table 3).

The increase of total sugar levels against the water stress produced by the PEG has been explained by Herrera et al., (2012). It is also important to highlight other materials such as 30T1 (20.58), 0VS2 (30.56) and 20T2 (41.87), which showed high total sugar levels, indicating tolerance to water stress; 30T1 and 20T2 are seedlings that did not regenerate from callous. This behavior may be due to SV inducted by factors such as age of tissues and number of sub-cultures (Sánchez Chiang & Jiménez, 2008).

0VS2 corresponds to the second SV planted in a medium without PEG, Naser et al., (2010) and (Díaz V, Lazo R, Portilla Ll, Ponce-Soto, & Marangoni, 2012), report a generalized increase of the contents of the total sugars. This is because soluble sugar content tends to remain on the leaves of the plants. The increase in sugar content soluble by inversion of some carbohydrates can contribute to improve tolerance to dissection and allows keeping metabolic activity (Vijayakumari & Puthur, 2016).

High total sugar contents in plants submitted to water stress would indicate an adaptation response by the plant, similar to chlorophyll contents. Seedlings increase photosynthetic pigments when stressed in order to compensate water deficit. These results concur with the ones reported by Díaz Valencia, (2016), which states that in the plants, at cellular level, happens an osmotic adjustment that aims to keep the osmotic potential during the period of stress using sugar or other compatible solutes (Castañeda-Castro, Gómez-Merino, Trejo-Téllez, & Pastelín-Solano, 2015) and by accumulation of ions, particularly K+ (Ma, Wang, Wang, Zhong, & Cheng, 2019).

CONCLUSIONS

The MS medium with 2,4-D (2 mg-L-1), there was a higher quantity of callous (95%), despite take more time in generation, it was the treatment that showed a higher survival rate of tissues.

It was possible to obtain somaclonal variants of passion fruit from only one regenerated seedling; coming from the callous of a base segment of foliage tissue, originated in the callogenic medium MS + 2,4-D (2 mg-L-1). The organogenic medium MS + ANA + BAP (0.3:0.6 mg-L-1) allowed plant regeneration, which shows the difficult obtainment of indirect organogenesis from callous of passion fruit foliar tissue.

The best results concerning morphometric measurements were obtained from the culture mediums containing PEG 20 and 25 g-L-1. Chlorophyll and total sugar levels in the SV showed significant statistical differences. The highest contents of chlorophyll and total sugar levels were recorded in an SV planted in a medium with PEG 25 g-L-1, a medium with high levels of water retention.

The result described above shows that it was possible to obtain genetic variability by callogenesis induction and later indirect and direct organogenesis, supported with the morphometric and biochemical measurements taken on the different tissues.

The results obtained are important raw materials to continue with the processes of phenotypic and genotypic selection of passion fruit seedlings that show different degrees of tolerance to water stress, aiming to a genetic improvement process of passion fruit in Universidad del Tolima.

ACKNOWLEDGEMENTS

To The Plant Protection Laboratory, The Group of Vegetable Genetic and Biotechnology Research (Grupo de Investigación en Genética y Biotecnología Vegetal -GEBIUT), The Laboratory of the Group of Natural Products Research (Grupo de Investigación en Productos Naturales - GIPRONUT) and the Office of Research and Scientific Development from Universidad del Tolima for funding the Project 260230516 "In-vitro Selection of Somaclonal Variants of Passion Fruit (Passiflora edulis var. flavicarpa Degener) Tolerant to Water Deficit."

BIBLIOGRAPHY

Albiski, F., Najla, S., Sanoubar, R., Alkabani, N., Murshed, R. 2012. In vitro screening of potato lines for drought tolerance. Physiology and Molecular Biology of Plants, 18(4): 315-321. Available in: https://doi.org/10.1007/s12298-012-0127-5. [ Links ]

Araus, J. L., & Kefauver, S. C. (2018). Breeding to adapt agriculture to climate change: affordable phenotyping solutions. Current Opinion in Plant Biology, 45 (Pt B), 237-247. Available in: https://doi.org/10.1016/j.pbi.2018.05.003. [ Links ]

Carr, M. K. V. (2013). The water relations and irrigation requirements of passion fruit (Passiflora edulis sims): a review. Experimental Agriculture, 49(4), 585-596. Available in: https://doi.og/10.1017/S0014479713000240. [ Links ]

Castañeda-Castro, O., Gómez-Merino, F. C., Trejo-Téllez, L. I., & Pastelín-Solano, M. C. (2015). Osmotic stress induced by polyethylene-glycol alters macronutrient concentrations in sugarcane (Saccharum spp.) Plants in vitro. Agrociencia, 49(8). [ Links ]

Cauz-Santos, L. A., Munhoz, C. F., Rodde, N., Cauet, S., Santos, A. A., Penha, H. A., et al. (2017). The Chloroplast Genome of Passiflora edulis (Passifloraceae) Assembled from Long Sequence Reads: Structural Organization and Phylogenomic Studies in Malpighiales. Frontiers in Plant Science, 8. Available in: https://doi.org/10.3389/fpls.2017.00334. [ Links ]

Cerqueira-Silva, C. B. M., Jesús, O. N., Santos, E. S. L., Corréa, R. X., & Souza, A. P. (2014). Genetic Breeding and Diversity of the Genus Passiflora: Progress and Perspectives in Molecular and Genetic Studies. International Journal of Molecular Sciences, 15(8), 14122-14152. [ Links ]

Chachar, M. H., Chachar, N. A., Chachar, S. D., Chachar, Q. I., Mujtaba, S. M., & Yousafzai, A. (2014). In-vitro screening technique for drought tolerance of wheat (Triticum aestivium L.) genotypes at early seedling stage. 10, 12. [ Links ]

Claro, M. de L., Rodrigues, G. P., & Teixeira, S. A. (2018). Functional properties of yellow passion fruit bark (Passiflora edulis) in metabolic syndrome/ Propriedades funcionais da casca do maracuja amarelo (Passiflora edulis) na sindrome metabolica. Recuperado 18 de abril de 2019, de Demetra: Food, Nutrition & Health website. [ Links ]

Departamento Administrativo Nacional de Estadística. (2016). Encuesta Nacional Agropecuaria por departamentos. Disponible en: https://www.dane.gov.co/index.php/estadisticas-por-tema/agropecuario/encuesta-nacional-agropecuaria-ena/encuesta-nacional-agropecuaria-por-departamentos. [ Links ]

Díaz V, Y., Lazo R, H. O., Portilla Ll, J. P., Ponce-Soto, L. A., & Marangoni, S. (2012). Respuesta fisiológica al déficit hídrico in vitro y análisis proteómico preliminar en callos de cuatro cultivares de Allium cepa L. (cebolla). Idesia (Arica), 30(3), 11-21. Available in: https://doi.org/10.4067/S071834292012000300002. [ Links ]

Díaz Valencia, P. A. (2016). Repositorio institucional UN (Masters, Universidad Nacional de Colombia - Sede Medellín). Available in: http://www.bdigital.unal.edu.co/51030/Links ]

Dubois, M.,. (1956). Colorimetric method for determination of sugars and related substances. Analytical chemistry, 28(3), 350-356. [ Links ]

Eslami, M., Ahmadikhah, A., Azimi, M.-R., & Saeidi, A. (2018). Differential response of an international rice («Oryza sativa» L.) collection to drought simulated stress (PEG) at vegetative stage. Australian Journal of Crop Science, 12(6), 855. [ Links ]

Fischer, G., & Casierra-Posada, F. (2009). Ecofisiología de las especies pasifloráceas cultivadas en Colombia. 24. [ Links ]

García, L. R., Leiva-Mora, M., Pérez, A. C., Collado, R., Martínez, I. P., Veitía, N. et al. (2015). Efecto del estrés hídrico inducido con PEG 6000 sobre la germinación in vitro de semillas de Phaseolus vulgaris L. cv. 'ICA Pijao'. Biotecnología Vegetal, 15(4). Available in: https://revista.ibp.co.cu/index.php/BV/article/view/502. [ Links ]

George, S., Jatoi, S. A., & Siddiqui, S. U. (2013). Genotypic differences against peg simulated drought stress in tomato. Pakistan Journal of Botany, 45(5), 1551-1556. [ Links ]

Hassan, N. S., Shaaban, L. D., Hashem, E. S. A., & Seleem, E. E. (2004). In vitro selection for water stress tolerant callus line of Helianthus annus L. Cv. Myak. International Journal of Agriculture and Biology, 6(1), 13-18. [ Links ]

Herrera Flores, T. S., Ortíz Cereceres, J., Delgado Alvarado, A., & Acosta Galleros, J. A. (2012). Crecimiento y contenido de prolina y carbohidratos de plántulas de frijol sometidas a estrés por sequía. Revista mexicana de ciencias agrícolas, 3(4), 713-725. [ Links ]

Kumar, T., Uzma, Khan, M. R., Abbas, Z., & Ali, G. M. (2014). Genetic improvement of sugarcane for drought and salinity stress tolerance using Arabidopsis vacuolar pyrophosphatase (AVP1) gene. Molecular Biotechnology, 56(3), 199-209. Disponible en: https://doi.org/10.1007/s12033-013-9695-z. [ Links ]

Lau, C., Jarvis, A., & Ramírez Villegas, J. (2011). Agricultura Colombiana: adaptación al cambio climático. Available in: https://cgspace.cgi ar.org/handle/10568/57475. [ Links ]

Loaiza, I. D., & Mesa, N. 2019. Evaluación de déficit hídrico en variantes somaclonales de maracuyá (Passiflora edulis var. flavicarpa, Deneger), usando mediciones morfométricas. Rev. Asoc. Col. Cienc. (Col.), 2019; 31: 56-60. [ Links ]

Ma, Y., Wang, L., Wang, J., Zhong, Y., & Cheng, Z.-M. (Max). (2019). Isolation and expression analysis of Salt Overly Sensitive gene family in grapevine (Vitisvinifera) in response to salt and PEG stress. PLOS ONE, 14(3), e0212666. Available in: https://doi.org/10.1371/journal.pone.0212666. [ Links ]

Manjarrés-Hernández, E. H., & Perea-Dallos, M. (2012). Establishment of a purple passion fruit (Passiflora edulis Sims.) propagation protocol from zygotic embryos and axillary shoots. Agronomía, 20(2), 53-64. [ Links ]

Marssaro, A. L., Morais-Lino, L. S., Cruz, J. L., Ledo, C. A. da S., Santos-Serejo, J. A. dos, Marssaro, A. L., et al. (2017). Simulation of in vitro water deficit for selecting drought-tolerant banana genotypes. Pesquisa Agropecuária Brasileira, 52(12), 1301-1304. Available in: https://doi.org/10.1590/s0100-204x2017001200021. [ Links ]

Medina, R. H., & González, X. J. (2014). Organogénesis directa in vitro de Nicotiana tabacum -variedad criollo Havanensis- a partir de láminas foliares. Available in: https://bdigital.zamorano.edu/handle/11036/3498. [ Links ]

Moreno-Bermúdez, L. J., Reyes, M., Rodríguez, M., Kosky, R. G., Roque, B., & Chong-Pérez, B. (2017). Respuesta de cultivares de Musa spp. al estrés hídrico in vitro inducido con polietilenglicol 6000. Revista Colombiana de Biotecnología, 19(2), 75-85. [ Links ]

Munhoz, C. F., Costa, Z. P., Cauz-Santos, L. A., Reátegui, A. C. E., Rodde, N., Cauet, S., et al. (2018). A generich fraction analysis of the Passiflora edulis genome reveals highly conserved microsyntenic regions with two related Malpighiales species. Scientific Reports, 8(1), 13024. Available in: https://doi.org/10.1038/s41598-018-31330-8. [ Links ]

Murashige, T., & Skoog, F. (1962). A Revised Medium for Rapid Growth and Bio Assays with Tobacco Tissue Cultures - Murashige - 1962 -. Available in: https://onlinelibrary.wiley.com/doi/pdf/10.1111/j.1399-3054.1962.tb08052.x. [ Links ]

Naser, L., Kourosh, V., Bahman, K., & Reza, A. (2010). Soluble sugars and proline accumulation play a role as effective indices for drought tolerance screening in Persian walnut (Juglans regia L.) during germination. Fruits, 65(2), 97-112. Available in: https://doi.org/10.1051/fruits/20010005. [ Links ]

Nath, A. K., Kumari, S. U. M. A. N., & Sharma, D. R. (2005). In vitro selection and characterization of water stress tolerant cultures of bell pepper. Indian Journal of Plant Physiology, 10(1), 14. [ Links ]

Rai, M. K., Kalia, R. K., Singh, R., Gangola, M. P., & Dhawan, A. K. (2011). Developing stress tolerant plants through in vitro selection-An overview of the recent progress. Environmental and Experimental Botany, 71(1), 89-98. Available in: https://doi.org/10.1016/j.envexpbot.2010.10.021. [ Links ]

Sánchez Chiang, N., & Jiménez, V. M. (2008). Técnicas moleculares para la detección de variantes somaclonales. Agronomía Mesoamericana, 20(1), 135. Available in: https://doi.org/10.15517/am.v20i1.4989Links ]

Schaller, G. E., Bishopp, A., & Kieber, J. J. (2015). The Yin-Yang of Hormones: Cytokinin and Auxin Interactions in Plant Development. The Plant Cell, 27(1),44-63. Available in: https://doi.org/10.1105/tpc.114.133595. [ Links ]

Sistema de información sobre biodiversidad de Colombia. (2018). Sistema de información sobre biodiversidad de Colombia. [ Links ]

Tsago, Y., Andargie, M., & Takele, A. (2014). In vitro se-lection of sorghum (Sorghum bicolor (L) Moench) for polyethylene glycol (PEG) induced drought stress. Plant Science Today, 1 (2), 62-68. Available in: https://doi.org/10.14719/pst.2014.1.2.14. [ Links ]

Verma, D., Ansari, M. W., Agrawal, G. K., Rakwal, R., Shukla, A., & Tuteja, N. (2013). In vitro selection and field responses of somaclonal variant plants of rice cv PR113 for drought tolerance. Plant Signaling & Behavior, 8(4), e23519-e23519. Available in: https://doi.org/10.4161/psb.23519. [ Links ]

Vijayakumari, K., & Puthur, J. T. (2016). y-Aminobutyric acid (GABA) priming enhances the osmotic stress tolerance in Piper nigrum Linn. plants subjected to PEG-induced stress. Plant Growth Regulation, 78(1), 57-67. Available in: https://doi.org/10.1007/s10725-015-0074-6. [ Links ]

Received: December 10, 2019; Accepted: November 24, 2020

Creative Commons License This is an open-access article distributed under the terms of the Creative Commons Attribution License