SciELO - Scientific Electronic Library Online

 
 número20INVESTIGAR Y PRÁCTICA PEDAGÓGICAUSO DE TECNOLOGÍAS DE INFORMACIÓN EN EL AULA: ¿QUÉ SABEN HACER LOS NIÑOS CON LOS COMPUTADORES Y LA INFORMACIÓN? índice de autoresíndice de materiabúsqueda de artículos
Home Pagelista alfabética de revistas  

Servicios Personalizados

Revista

Articulo

Indicadores

Links relacionados

  • En proceso de indezaciónCitado por Google
  • No hay articulos similaresSimilares en SciELO
  • En proceso de indezaciónSimilares en Google

Compartir


Revista de Estudios Sociales

versión impresa ISSN 0123-885X

rev.estud.soc.  n.20 Bogotá jun. 2005

 

APRENDIZAJE EN COLABORACIÓN MEDIADO POR SIMULACIÓN EN COMPUTADOR. EFECTOS EN EL APRENDIZAJE DE PROCESOS TERMODINÁMICOS

Fernando Becerra G.

Ingeniero Civil de la Universidad de la Salle. Magíster en Educación de la Universidad de los Andes. Profesor de Física del Colegio los Nogales.


RESUMEN

En esta investigación exploré los efectos del uso del software Modellus, acompañado de actividades de discusión en colaboración, en el aprendizaje de los principios de la termodinámica, en estudiantes de 10º grado de un colegio privado de Bogotá. Modelluses una herramienta que simula y modeliza sistemas. Trabajé con 41 alumnos organizados en un grupo control y otro experimental. El grupo control realizó una lectura y un laboratorio y resolvió problemas propuestos. El grupo experimental recibió la misma instrucción del grupo control y además trabajó en parejas para diseñar en Modellus la simulación del evento físico. Comparé los resultados del aprendizaje de los grupos por medio de una prueba escrita y un proyecto de aplicación y los encontré mejores en los alumnos que habían desarrollado la simulación en colaboración. Además describo cualitativamente el aporte que los alumnos atribuyen al programa y al trabajo en colaboración y discuto las implicaciones pedagógicas de estos hallazgos.

PALABRAS CLAVES: Trabajo en colaboración, termodinámica, simuladores en física.


ABSTRCT

I report on a research project exploring the effects of using the Modellus software, aided by collaborative discussion, on the learning of thermodynamic principles in 10th grade students at a private school in Bogotá. Modellus is a tool designed to simulate model systems. I worked
with 41 students organized in a control group and an experimental group. The control group had a reading and a lab activity and solved a set of given problems. The experimental group received the same instruction as the control group and also worked in pairs to design the simulation of the physical event with the Modellus program. I compared the learning results of both groups by means of a written test and an application project and found them better in the students who had developed the simulation collaboratively. I qualitatively describe the contribution that the students assign to the program and to collaborative work. Then I discuss the pedagogical implications of these findings.

KEYWORDS: Collaborative work, thermodynamics, physics simulators.


Marco conceptual

Durante mi práctica docente ha sido una observación constante que a los alumnos de la clase de física de 10º grado se les dificulta la comprensión de la termodinámica. Esta situación se ha hecho evidente cuando les solicito que elaboren proyectos de investigación que demuestren aplicaciones de lo que han entendido a casos de la vida real. Lo que veo en dichos trabajos es que los estudiantes no alcanzan la comprensión esperada; hay poca claridad en los conceptos y escasa transferencia del conocimiento científico a situaciones concretas.

Por ejemplo, los estudiantes pueden dibujar un proceso isotérmico (una transformación de energía durante la cual la temperatura permanece constante) en una gráfica de Presión contra Volumen. Igualmente, pueden dibujar un proceso adiabático o reversible (aquél en que la transformación de energía ocurre en un sistema térmicamente aislado, de tal manera que no puede haber intercambio de calor con el medio circundante mientras se realiza la transformación). Pero cuando tienen que unir estos procesos en ciclos como el de Carnot, Otto o Diesel e interpretar las gráficas y relacionarlas en términos de calor y trabajo con lo que está pasando físicamente en un motor, por ejemplo, la transferencia es muy pobre y no encuentran aplicaciones más allá de las simples gráficas. Esto me ha llevado a preguntarme qué estrategias podía utilizar para que mis estudiantes lograran una mejor comprensión de la termodinámica, que los indujera a aplicar lo aprendido a la comprensión de procesos reales. La opción que escogí para tratar de contestar mi pregunta fue la de llevar a la práctica una simulación, usando el programa de computador Modellus, para que los estudiantes trabajaran en colaboración, creando e interpretando los datos que la simulación necesita para resultar eficiente. Hacer esto probablemente les facilitaría hacer conexiones entre los lenguajes gráfico y matemático y la realidad del evento físico.

Fue la definición de comprensión proporcionada por Perkins (1999) la que me llevó a pensar que este tipo de intervención pedagógica que combina el uso de un programa de simulación y la discusión en colaboración podría mejorar la de los estudiantes en termodinámica. Según él, comprender implica la habilidad de pensar y actuar con flexibilidad a partir de lo que uno sabe.

Comprender un tópico, entonces, significa estar en capacidad de transferir de manera flexible determinados conocimientos a contextos diferentes, volverlos verdaderos desempeños de comprensión, como él los denomina. Esto quiere decir que para que una persona avance en el entendimiento de un tema y para apreciar dicho entendimiento tiene que hacer algo que ponga su comprensión en juego: por ejemplo, explicar, construir una argumentación para sustentar sus puntos de vista ante otros o armar un producto (Perkins, 1999). En este contexto, resolver un problema real y utilizar Modellus como herramienta que facilite diseñar una simulación virtual del problema y relacionar el evento físico con las ecuaciones y gráficas que el programa hace, resulta un buen conjunto de desempeños de comprensión. En el diseño de la simulación de un proceso termodinámico, por ejemplo, la teoría se vuelve realidad cuando el estudiante puede visualizar un pistón y tiene que analizar si el gas que está dentro de él tiene que comprimirse o expandirse para facilitar su movimiento. Esto implica darle o quitarle calor y producir trabajo sobre el sistema o que sea éste el que lo haga sobre el pistón. Además, los desempeños de los alumnos, tanto en el desarrollo de la simulación como en la discusión con sus compañeros, me permiten verificar el grado de comprensión de los procesos termodinámicos a los que vayan llegando.

Boix, Mansilla & Gardner (1999), además, proponen que la comprensión en ciencias tiene ciertas cualidades. Analizando un diálogo entre estudiantes de 14 años para caracterizar el pensamiento científico en aprendices de ciencias, observan su capacidad para usar un rico modelo mental, el cuestionamiento permanente de sus corazonadas con un sano escepticismo, su uso de métodos de investigación científica como el control de variables y el diseño experimental para construir el conocimiento, su uso del lenguaje para hacer público este conocimiento y la reflexión acerca de las diferentes formas de resumir sus resultados. El uso de Modellus implica la modelación del evento, el preguntarse cómo llevarla al lenguaje matemático y al gráfico y el control de variables para entender lo que está pasando en la vida real. Y la discusión en colaboración exige que todo el tiempo el pensamiento se comunique en lenguaje natural y que se comprenda el pensamiento de otros. Varios estudios teóricos han producido evidencia de que el uso de diferentes recursos proporcionados por el computador, como por ejemplo los simuladores, puede propiciar algunas condiciones que mejoren la comprensión. Brown (1999) indica que aunque una simulación no es el reemplazo de la vida real, ofrece alternativas para la preparación en el campo de la experiencia; además, es reversible y permite el control de variables. Las simulaciones han probado, según Brown, que causan mayor satisfacción que las actividades de laboratorio tradicional, dado que los humanos tenemos una atracción natural por el juego. Por ser precisamente un juego, las simulaciones le dan seguridad al participante y ofrecen la posibilidad de reflexionar sobre ellas y replicarlas en contextos nuevos.

Al respecto, Linn (1999) desarrolló un proyecto llamado Computer as Learning Partner(CPL) que utilizó la tecnología del computador para que estudiantes de nivel escolar pudieran explorar simulaciones de eventos térmicos complejos y experimentar con casos de la vida diaria, haciendo recolección de datos en un tiempo real. Se basó para hacerlo en la observación de que los estudiantes en vez de utilizar las explicaciones de los fenómenos científicos dadas por los profesores o recibidas de lecturas o películas, tienden a aislarlas y prefieren conservar su punto de vista construido intuitivamente (di Sessa, 1998; Caramazza, Mc Closkey & Green, 1981; Champagne, Klopfer & Gunstone, 1982; Hewson & A´Becket Hewson, 1984; Linn, 1986 en Linn, 1999). En el CPL, los estudiantes condujeron experimentos, recolectaron información y sintetizaron su comprensión en patrones que se grabaron en un cuaderno electrónico. Se los motivó a que preguntaran, criticaran, analizaran y reflexionaran sobre las explicaciones que iban encontrando. Finalmente, los estudiantes pudieron integrar sus conocimientos mediante el uso de principios y prototipos en situaciones reales, en un proyecto de aplicación, manejando con mayor criterio, los mecanismos que explican los fenómenos térmicos. White (1999), por su parte, describe en un texto teórico cómo desarrolló un modelo de simulación que llamó Intermediate Causal Models(ICM), en el cual trata de aplicar las leyes de la física en una forma causal para predecir lo que sucederá a medida que ocurran los diferentes eventos. Emplea representaciones visuales, usando símbolos gráficos para puntualizar la secuencia de comportamientos de los diferentes fenómenos en forma diagramática. De esta manera, construye con los alumnos modelos de simulación para trabajar el tema de los circuitos y la corriente eléctrica, y busca conectar la matemática con las gráficas que genera un software de simulación. Estos modelos son usados para explicar, entender y conectar la física formal con fenómenos de la vida real.

De la misma manera, Edelson (1998) desarrolló un proyecto llamado The Learning Through Collaborative Visualization Project que, en los dos primeros años, contó con la participación de 300 estudiantes de escuela media y 6 profesores de secundaria de los Estados Unidos. Se utilizó el computador como herramienta para visualizar y modelar una práctica científica que en este caso se especializó en la tierra y el medio ambiente. La idea de este proyecto era medir si los estudiantes podían explicar más profundamente un fenómeno científico, habiendo utilizado tecnología computacional en sus laboratorios. Encontró diferencias significativas en las explicaciones de fenómenos científicos, la recolección de datos y el análisis gráfico entre los que participaron en el proyecto en comparación con los que no lo habían hecho. Por otra parte, las características del ambiente computarizado parecen ser ideales para un aprendizaje basado en problemas. Buteler ( 2001) y Tao & Gunstone (1998), hicieron investigaciones teóricas acerca de la solución de problemas de física y encontraron que la habilidad para hacer la conexión entre un evento físico y su representación gráfica es tal vez uno de los desempeños de comprensión más complejos, porque implica conocer muy bien lo que está pasando en el experimento, hacer una abstracción de él y representarlo en una gráfica.

De acuerdo con Laffely, Tupper, Musser, y Wedman (1998) que realizaron un estudio teórico, el aprendizaje mediado por el computador en el Internet es apropiado para el aprendizaje aplicado en proyectos ya que proporciona recursos amplios y ayuda a los estudiantes a hacer sus propios planteamientos y presentar nuevas formas de conocimiento, los cuales amplían los mecanismos de colaboración y comunicación.

Lapp (2000), por ejemplo, desarrolla una práctica de aula en la que muestra cómo, a medida que sucede un evento físico, se pueden obtener simultáneamente gráficas del mismo, usando para ello modelos computacionales. Usa una interfase, un censor y una calculadora gráfica para que el estudiante relacione personalmente movimiento con gráficas y pueda inferir de ellos comportamientos físicos. Loverude (2001) hizo un estudio, con estudiantes, sobre la comprensión de la primera ley de termodinámica. Encontró que un error importante de comprensión radica en el hecho de no reconocer el trabajo como concepto constitutivo de la primera ley, lo que impide la aplicación de ésta a la comprensión y al análisis gráfico de problemas de la vida real. De la misma manera, Wisnudel, Stratford, Krajcik & Sloway (1998) hacen un estudio de caso en el que un estudiante de ciencias de noveno grado, en una escuela pública de Michigan, modela sistemas ecológicos, haciendo representaciones visuales a través de gráficas animadas con el propósito de establecer la conexión entre éstas y los conceptos de causalidad de fenómenos científicos. La primera aproximación la hace el estudiante cuando modela un esquema animado de la calidad del agua y posteriormente un modelo de los factores del medio ambiente que afectan un ecosistema. Encuentran los autores que la dinámica de hacer modelos ayuda al estudiante a comprender cómo estos pueden ser usados como herramientas para un mejor entendimiento de la ciencia.

Así mismo, se han hecho investigaciones sobre el uso del computador y sobre trabajo en colaboración, algunas de las cuales estudian la utilidad del computador y otras, computador y colaboración. Al respecto, Songer (1998) realizó un estudio acerca del clima con ochocientos estudiantes en edades entre los 13 y los 16 años, de 26 escuelas y 7 países, usando Internet. Dividió los estudiantes en dos grupos, uno control que trabajaba sin computador y uno experimental que trabajaba con Internet. Al final los dos grupos resolvieron unas preguntas relacionadas con el comportamiento del clima en sus localidades y después de ocho 8 semanas, los estudiantes del grupo experimental demostraron una mejor recolección de datos como método investigativo, resolvieron las preguntas con más profundidad y tuvieron oportunidad de compartir con sus pares sus respuestas y sus comentarios. Por su parte, Hargis (2001) realizó un estudio acerca de la explosión demográfica usando un software de aplicación soportado por Internet, con 145 voluntarios del Engineering Research Center y el College of Ingeneering de la Universidad de Florida. Los participantes fueron aleatoriamente asignados a dos grupos, uno control que trabajó con la información suministrada por los textos y otro experimental que lo hizo sobre información que recolectó a través de Internet. Realizó un pre y un post test con los dos grupos en los cuales tenían que resolver 20 preguntas. Al final de la investigación, encontró diferencias significativas entre los dos grupos que evidenciaron una mejor recolección de datos, interpretación de las gráficas y, en general, una mejor comprensión de los participantes del grupo experimental acerca del tema demográfico.

También, Berry (2000) hizo una investigación sobre formas de trabajar en un experimento de electricidad, en el laboratorio de física, usando computador, con estudiantes que estaban entre los 8 y los 11 años, de dos colegios públicos de Melbourne. Hizo entrevistas con los estudiantes antes, durante y después de realizados los laboratorios. Encontró que con el uso de computadores, los estudiantes pudieron verificar la teoría que habían aprendido anteriormente y obtuvieron una mejor imagen de un fenómeno eléctrico.

De la misma manera, McFarlane & Friedler (1998) realizaron un estudio con una población de 625 estudiantes entre los 11 y 17 años, de cuatro países, usando simuladores en computadores portátiles en un proyecto de ciencias en el que los alumnos tenían que relacionar Temperatura contra Tiempo y encontrar en ellos patrones en la gráfica lineal y en los eventos descritos. Organizaron un grupo control en el que desarrollaron dos proyectos prácticos sin el uso de computadores y un grupo experimental que usaba computadores portátiles en el que desarrollaban la misma investigación; monitorearon la lectura de patrones, su representación y su interpretación por medio de cuestionarios anteriores y posteriores al trabajo de investigación. Los resultados mostraron que los alumnos del grupo experimental lograron más progreso en la habilidad para leer e interpretar gráficas de Temperatura contra Tiempo y fue particularmente significativa la mejora para dibujar las curvas de Temperatura contra Tiempo y poder de ellas predecir el comportamiento en nuevos sistemas.

Además de la utilidad de las simulaciones computarizadas en la comprensión de conceptos, el trabajo en colaboración también parece ser un estimulante de la comprensión. Springer, Stanne y Denovan (2000) revisaron 39 estudios que compararon el trabajo en pequeños grupos con el individual. Los resultados muestran que, en general, con el trabajo en pequeños grupos los alumnos tienen mejor desempeño académico, mejor actitud hacia el aprendizaje y más persistencia en el trabajo.

En un estudio realizado por Alavi (1994) con 77 hombres y 50 mujeres, distribuidos en dos grupos -uno de 78 estudiantes que trabajaron con GDGS (group decisión support system), que es una herramienta de software en el computador que da soporte a los estudiantes mientras los grupos trabajan en colaboración los ejercicios, y un grupo de 48 estudiantes que recibieron la instrucción tradicional de lecturas y discusión en clase-, se encontró que los estudiantes que trabajaron con el computador conjuntamente, tuvieron efectos significativos en las reacciones afectivas: percibieron desarrollo de habilidades, auto reporte e interés por el aprendizaje, evaluación de la experiencia en el salón de clase y del aprendizaje en grupo.

Por ejemplo, Boxtel (2000) hizo una investigación sobre el nivel de comprensión de conceptos eléctricos en la colaboración entre pares. Trabajó con 56 estudiantes de 15 y 16 años, en dos clases, en dos colegios. Encontró diferencias estadísticamente significativas en la solución de preguntas a favor de estudiantes que trabajaron en colaboración. Las medidas fueron tomadas del pre y post test y se midió el cambio que hubo en la habilidad de comunicar la comprensión de los conceptos y la relación entre ellos.

Uribe, Klein, y Sillivan (2003), hacen un estudio cuyo propósito era investigar los efectos del uso del computador, trabajando en colaboración en la solución de problemas. Participaron 59 estudiantes de la Fuerza Aérea; 47 de ellos eran hombres y 12 mujeres. Una vez completada la instrucción del programa, se les administraba un quizde conocimiento acerca de modelos aeroespaciales. Se dividieron los participantes en dos grupos: uno de los cuales trabajaba individualmente con la Web y el otro grupo, trabajaba con la Web en colaboración. Durante el ejercicio, los dos grupos tenían que resolver unos problemas propuestos y el estudio mostró mejoras estadísticamente significativas en la solución de los problemas en los estudiantes que además de trabajar con la Web lo hicieron en colaboración. Los participantes que trabajaron con un compañero parecieron haber recibido beneficios, gracias a la habilidad de discutir el problema y las posibles soluciones. Por su parte Klein & Doran (1999) hicieron una investigación para medir los efectos de trabajar en pequeños grupos una simulación en computador acerca del manejo de herramientas tecnológicas. La llevaron a cabo con 105 estudiantes de un colegio (63 mujeres, y 42 hombres) que tomaron el curso de College of Business divididos en dos grupos, uno control que recolectaba y manejaba datos manual e individualmente y un grupo experimental que lo hacía en pequeños grupos con el simulador de computador. Encontraron diferencias significativas entre los dos grupos que evidenciaron que aquellos que habían actuado en colaboración, en pequeños grupos con el simulador, manejaron la información en forma más práctica, tuvieron una mejor retroalimentación y revisaron con más profundidad sus resultados.

Preguntas de investigación

Con base en la revisión bibliográfica que constituye mi marco conceptual, innové durante un semestre en mi curso de física en el sentido de trabajar en colaboración el diseño de una simulación en computador de un proceso termodinámico. Paralelamente investigué el efecto de este cambio en la comprensión de termodinámica de mis estudiantes de 10º grado. Busqué respuesta a las siguientes preguntas de investigación:

-¿La intervención mejora la comprensión de termodinámica en estudiantes de física II del Colegio los Nogales?

-Si lo hace,

¿Cuál es el aporte de Modellus a esta mejora?

¿Cuál es el aporte del trabajo en colaboración a esta mejora?

Metodología

Trabajé el curso de física con dos grupos de alumnos y en ambos enseñé la unidad de termodinámica en 20 clases de una hora cada una. Uno de los grupos vivió la innovación y el otro funcionó como grupo control. Ambos compartieron adiestramiento basado en las lecturas y las conexiones que realizaban los estudiantes con los laboratorios hechos en clase, a lo cual se le añadió la simulación en Modellus en grupos de colaboración, en el grupo experimental. Mi acercamiento a la respuesta es, tanto cuantitativo, al medir la comprensión de los conceptos de termodinámica, como cualitativo, al distinguir la contribución de Modellus y del trabajo en colaboración, a esa comprensión.

Participantes

Los alumnos participantes estudiaban en una institución educativa privada de la ciudad de Bogotá, en donde a partir de noveno grado cursan las materias por semestres. Durante los dos semestres de noveno, dos de décimo y el primero de undécimo, los alumnos deben tomar dos cursos de física, dos de química y uno de biología. Física II puede ser tomada en décimo o en undécimo grado, de modo que contaba en mi curso con estudiantes que estaban entre los 16 y los 18 años.

Cuarenta y un estudiantes tomaron física II, durante el segundo semestre del 2003, divididos en dos grupos: uno de 20 alumnos fue el grupo control y otro de 21 fue el grupo experimental. Los estudiantes fueron asignados aleatoriamente a los grupos por la dirección de bachillerato, sin intervención de profesores.

Recolección y análisis de datos

Para contestar la primera pregunta de investigación sobre el impacto de la intervención en el aprendizaje de la termodinámica, recogí datos con una prueba escrita y un proyecto final de aplicación, ambos individuales, que usé, tanto en el grupo experimental como en el grupo control.

Evaluación escrita:Contenía 10 preguntas, cada una con un valor de 10/100. Cuatro de las preguntas eran teóricas y medían el grado de comprensión de las lecturas del libro de texto y las conexiones que realizaban los estudiantes con los laboratorios hechos en clase. Las otras 6 preguntas eran de aplicación y buscaban medir la transferencia de los conceptos al análisis de casos de la vida real.

Proyecto final de aplicación: Aquí los estudiantes debían aplicar un proceso termodinámico a un caso de la vida real. Lo evalué por medio de una matriz diseñada para tal fin, cuyos criterios y valores fueron los siguientes: presentación del proyecto (3/20); coherencia del procedimiento (3/20); gráficas y tablas utilizadas (2/20); calidad de los cálculos (5/20); conclusiones (5/20); y profundización del tema (2/20).

Realicé análisis estadísticos de los resultados numéricos de estos dos instrumentos, comparando los promedios de los resultados de los grupos control y experimental por medio de la prueba estadística t-Student. Para contestar la segunda pregunta, distinguiendo la contribución de Modellus y del trabajo en colaboración al aprendizaje, de los estudiantes del grupo experimental, hice grabaciones de las discusiones en grupo durante el desarrollo de la intervención y entrevistas semiestructuradas y en profundidad, al final de la misma.

Grabaciones: Grabé las discusiones de cuatro parejas distintas de estudiantes mientras diseñaban la simulación con Modellus, en tres momentos diferentes de la intervención: al inicio, en un momento intermedio y al final. Conformé las parejas de modo que un estudiante de bajo rendimiento trabajara con otro de alto rendimiento que le diera seguridad y con quien se sintiera tranquilo para participar y aportar en el diseño. En los dos momentos siguientes de grabación, roté las parejas de manera que el estudiante de bajo rendimiento tuviera que trabajar con un compañero de rendimiento promedio, con quien tendría oportunidad de mostrar su avance en la discusión en grupo y en el aporte de ideas, y con otro de igual rendimiento, para demostrar o no, mejora en la comprensión. Logré un total de doce grabaciones, cada una de una hora de duración.

Entrevistas: Entrevisté a 6 estudiantes del grupo experimental, una vez finalizada la intervención. Escogí dos que habían tenido promedio alto en la evaluación y en el proyecto, 2 que habían tenido promedio medio y 2 que habían alcanzado un promedio mínimo aceptable; 3 mujeres y 3 hombres para evitar sesgos de género.

Categoricé la información de las entrevistas con el criterio general de buscar tipos de aportes tanto de Modellus como del trabajo en colaboración a la calidad de la comprensión del tema. Después hice triangulación con las grabaciones de la interacción, y busqué evidencia que corroborara lo dicho en las entrevistas. El propósito de esta triangulación fue comprobar si, en efecto, lo que los alumnos identificaban como aportes a la comprensión al final de la experiencia eran fenómenos verbalizados durante su desarrollo.

Resultados

Tanto el análisis cuantitativo como el cualitativo arrojaron resultados positivos de la intervención y de cada una de sus partes, en relación con el aprendizaje de termodinámica de los estudiantes. Igualmente mostraron interesantes aprendizajes sociales.

Aprendizaje de los conceptos de la termodinámica

Tanto la prueba escrita como el proyecto final de aplicación, mostraron aprendizaje patente en la aplicación de los conceptos de la termodinámica al análisis de situaciones reales. La Tabla 1 muestra que aquellos estudiantes que participaron en la intervención obtuvieron, en promedio, resultados totales significativamente mejores en la prueba escrita que los del grupo control, a un nivel de confiabilidad de 0.005. Además la desviación estándar para los resultados del grupo experimental es menor, de modo que después de la intervención parecen haber disminuido las diferencias de comprensión entre los estudiantes que la experimentaron.

La Tabla 2 compara los resultados de las preguntas teóricas y de las preguntas de aplicación en la misma prueba escrita. En cuanto a las preguntas teóricas, los resultados no muestran una diferencia significativa entre los grupos experimental y control. Por el contrario, al comparar los resultados de las preguntas donde había que aplicar conceptos al relacionar ecuaciones, gráficas y eventos físicos, hay resultados significativamente más altos, en promedio, en el grupo experimental, a un nivel de confiabilidad de 0.005. Además la desviación estándar es considerablemente menor en este grupo experimental, lo que indica un aprendizaje más homogéneo entre los estudiantes.

El análisis cuantitativo del proyecto final de aplicación corrobora estos resultados, como indica la Tabla 3. Al aplicar conceptos de la termodinámica a casos reales, aquellos estudiantes que participaron en la intervención obtuvieron en promedio resultados significativamente mejores que los del grupo control, a un nivel de confiabilidad de 0.005. Igualmente la desviación estándar es menor para el grupo experimental.

Al complementar este análisis con uno cualitativo, guiado por los criterios de la matriz de evaluación, encuentro que los proyectos de aplicación de los alumnos del grupo experimental contienen mejores aplicaciones a los procesos termodinámicos que las del grupo control porque logran mayor coherencia entre los datos recolectados y los procesos para llegar a conclusiones argumentadas y demostrables. También muestran un análisis más amplio y concreto de las gráficas y los cálculos para obtener diferentes ciclos en los que intervienen procesos termodinámicos. Encuentro, además, que muchos alumnos del grupo control resultan replicando las gráficas y las aplicaciones leídas en el libro de texto, mientras que en el grupo experimental las aplicaciones son mas originales, producto de las relaciones establecidas durante el diseño de la simulación.

Contribución de Modellus y del trabajo en colaboración

El análisis cualitativo de las entrevistas hechas al final de la intervención y de las conversaciones durante el diseño de la simulación revela, en palabras de los alumnos, aportes diferentes del trabajo con Modellus y del trabajo en colaboración a los resultados positivos que demostró el análisis de las pruebas. Modellus hizo que los alumnos visualizaran procesos termodinámicos, relacionaran representaciones diferentes de estos procesos y entendieran la importancia de la representación del proceso en una gráfica y de la interpretación que es posible hacer de ella. Por su parte, el trabajo en colaboración los ayuda a aprender porque los pone a trabajar con personas que están en igualdad de condiciones de conocimiento, les permite compartir información diferente que cada uno posee y complementarse en conocimientos y, finalmente, les lleva a conocer diferentes formas de entender y de proceder para lograr conocimiento.

El aporte de Modellus

Visualizar un proceso termodinámico
Una simulación en Modellus tiene la característica de mostrar simultáneamente las ecuaciones, las gráficas y la simulación virtual de un evento físico. Por ejemplo, se puede escribir la ecuación de los gases ideales, ver la gráfica de presión contra volumen de dichos gases y, simultáneamente, simular un pistón cuyo gas interior se comprime y se expande, como sucedería en un motor de combustión. Ante la pregunta sobre cómo creían que Modellus había ayudado a entender mejor un proceso termodinámico, los 6 estudiantes entrevistados coincidieron en que, gracias a Modellus ver el proceso les ayuda a comprender mejor el tema. Uno de los estudiantes, por ejemplo, comenta: "Pues, una imagen vale más que mil palabras. Finalmente creo que es en lo que ayuda Modellus". Otro entrevistado dijo: "Me gusta ver la curva y cómo se devuelve en cada parte del proceso; le da a uno la idea general de lo que está pasando".

Revisando las grabaciones hechas durante el diseño de la simulación, encontré que 10 de las doce 12 parejas grabadas tienen conversaciones grabadas similares a las siguientes, en las que los integrantes claramente están observando diferentes aspectos del fenómeno que modelan en la pantalla de su computador y se llaman la atención unos a otros hacia lo que observan:

S1: "Mire que nos da una línea recta en un proceso isobárico donde, se puede uno dar cuenta de que la variación del volumen por la presión da el trabajo realizado".

S2: "Pero mire el pistón; para que se mueva tengo que calentar el gas, si quiero que la presión permanezca constante".

S1:"Por eso, o sea que hay calor y trabajo; la variación de energía interna da cero".

S2: "Es más fácil verlo en la gráfica; si el volumen cambia hay trabajo, si la presión cambia, no. ¿Si ve?"

Otra de las parejas comenta:

S3:"¿Será que uno puede unir un proceso adiabático con un isotérmico?"

S4:"Claro, eso es lo hace Carnot en su ciclo".

S3:"Pero, ¿cómo se haría?"

S4:"Yo creo que en los puntos de presión y volumen donde termina uno empieza el otro. Mire, cojamos estos puntos donde termina el isotérmico y hagamos una expansión adiabática".

S3:"Listo,..... pero los píxeles no me cuadran".

S4:"Pues, cambiemos entonces de escala en la segunda gráfica y vera"

S3:"¿Si ve? Listo, mire como se ve, después de uno le sigue el otro, ¡qué chévere!"

Relacionar

Encontré que 5 de los 6 estudiantes me dijeron en sus entrevistas que el programa Modellus les ayudó a relacionar gráficas con eventos físicos en un proceso termodinámico. Todos concuerdan con lo expresado por uno de ellos: "Las animaciones y las simulaciones le ayudan a uno a entender qué le pasa al calor, si sube o si baja, dependiendo del pistón o de lo que pasó". A la pregunta de si se entiende mejor con Modellus un estudiante dijo: "Esas cosas que uno no entiende leyendo, las entiende mejor al relacionar los pistones con la gráfica al mismo tiempo. Eso me pareció chévere".

El ejemplo más claro del comentario de esta estudiante lo encontré en ella misma, en una de sus conversaciones en parejas mientras diseñaban el ciclo de Carnot. Sus comentarios, en los que relaciona modelo, gráfica y ecuación resultan semejantes a los de otras nueve 9 de las 12 parejas grabadas. Ella dice en la grabación:

S1: "Vea que la clave está en el pistón; mientras en un isotérmico el calor que le agrega se vuelve trabajo, luego hay que hacer lo contrario".

Más adelante dice:

S1: "Mire, es más fácil entender un proceso adiabático, si usted lo relaciona con el movimiento del pistón; mire el calor que hay que agregarle para que se expanda y ahora mire qué hay que hacer para que se contraiga [comprima] ".

Así mismo, otra de las parejas grabadas durante el diseño de la simulación comentaba:

S2:"Yo no entiendo lo que está pasando ahí".

S3: "Pues hombre, vea....Mire que es una compresión adiabática; póngale cuidado que el gas se está comprimiendo y no hay calor sobre el sistema. La energía interna es igual a menos el trabajo".

S2:"Espere a ver....Cuando hicimos el primer adiabático que se expandía tampoco había calor".

S3:"Claro, ¿no ve que necesito cerrar el ciclo? O sea que el pistón vuelva a su posición inicial".

S2:"Pero nosotros hicimos dos isotérmicos y dos adiabáticos para cerrar el ciclo. En los dos primeros la temperatura permanece constante y en los adiabáticos no hay calor, o pasa muy lentamente, al final entonces ¿no tenemos nada de calor durante el proceso?"

S3: "Por eso es un modelo ideal, ¿entiende?"

S2: "Sí, claro, el modelo le da a uno todos los datos, lo tenaz es relacionarlos".

La importancia de la gráfica

Analizar una gráfica significa darle una representación a una ecuación, recolectar en forma ordenada e interpretar nueva información a partir de dicha gráfica. Estos procesos parecen revestir especial dificultad para los alumnos. De los 6 entrevistados 5 mencionan estos procesos como elementos importantes en la comprensión del proceso termodinámico e indican que Modellus facilita su comprensión. Uno de los estudiantes, por ejemplo, nos dice: "Para mi es muy difícil describir un fenómeno basado en una gráfica. Mire que Modellus me da la posibilidad de hacerlo. Y yo tengo que analizar la gráfica, si quiero simular virtualmente algo que está pasando en la realidad". Otro estudiante expresa que la conexión entre la gráfica y el evento físico mejoró su comprensión: "La simulación me ayudó porque tenía el dibujito y al mismo tiempo uno podía analizar la gráfica de qué pasaba cuando subía o bajaba el pistón y qué pasaba cuando subía o bajaba la gráfica".

Igualmente encontré gran cantidad de comentarios acerca de la importancia de las gráficas en las grabaciones durante el diseño de la simulación. Los siguientes diálogos entre estudiantes los ilustran. El primer diálogo fue grabado al inicio del diseño de la simulación y muestra a los estudiantes tratando de conectar los movimientos simultáneos de la gráfica y del pistón:

S1: "Ahora lo difícil es conectar ésta gráfica con el pistón".

S2: "Pero por qué, si va siguiendo el orden de la curva, va entendiendo cómo es que se mueve el pistón".

S1: "¿Sabe?, yo prefiero hacerlo al revés, primero el pistón y luego la gráfica".

S2: "Bueno, hágale a ver y yo veo cómo lo hace".

El segundo diálogo, que fue grabado en un punto medio de la intervención, muestra la interpretación también simultánea que los estudiantes están haciendo de la necesidad de calor, para que el gas se expanda, y sus consecuencias en términos de trabajo:

S3: "¿Si ve que nos da la misma gráfica del libro?"

S4:"Sí, yo vi. El dibujo en el libro pero yo en el libro no lo entiendo".

S3:"Pues analicemos. Mire lo que pasa cuando se le agrega calor, ¿si ve que en la gráfica el volumen se agranda?"

S4: "O sea que diseñamos el pistón para que se expanda durante ese proceso..."[se expande el gas dentro del pistón

S3: "Exacto, y así todo el ciclo. Sí ve que analizando la gráfica puede uno saber cómo es que se está moviendo el pistón, qué es lo que está pasando".

S4:"Claro, déjeme hacer el resto a mí".

El aporte del trabajo en colaboración

Igual situación de conocimiento

Al hablar del trabajo en colaboración, de los seis 6 estudiantes entrevistados, 3 le dieron importancia al hecho de que con sus parejas estaban en una situación de igualdad, lo que permitió comprender mejor: "...con un compañero uno está en la misma situación de conocimiento, por así decirlo, y está al mismo nivel; o sea, el profesor va a saber la respuesta mientras que con el compañero uno tiene que explorarla porque ninguno de los dos la va a saber. Entonces es como trabajar los dos para sacar algo que ninguno de los dos sabe". Algunos diálogos que encontré en las grabaciones confirman esto. El primero ocurrió al inicio del trabajo de la simulación, cuando los estudiantes estaban empezando por trabajar las ecuaciones para de ellas generar las gráficas correspondientes. En la primera, los dos alumnos encuentran juntos una dificultad común, exploran y deciden un camino para solucionarla.

S1: "¿Qué ponemos de R?"

S2: "Ni idea, póngale cualquier valor".

S1:"No creo, porque entonces nos daría cosas diferentes".

S2: "Pero, ¿qué es R?"

S1: "No sé, veamos en el libro......Mire, aquí está...R es una constante de proporcionalidad de gases ideales, mire que tiene un valor constante, ¿si ve?"

S2: "Listo, ya podemos graficar la ecuación".

La siguiente conversación fue grabada en la etapa final del diseño de la simulación donde había que buscar la manera de hacer coincidir el comportamiento de la gráfica cuando el gas del pistón se comprime. Se puede identificar de nuevo el deseo de los estudiantes por encontrar la solución al problema, buscar juntos una alternativa y ponerla a prueba. Se nota, de nuevo, que en el punto de partida están en igualdad de condiciones de conocimiento. Además parecería que el uso del programa los estimula a explorar autónomamente primero, antes de buscar ayuda del "experto".

S3:"¿Cómo hacemos para que la gráfica se devuelva?"

S4: "No sé, ¿le preguntamos a XXXX [el profesor] ?"

S3:"No, intentémoslo nosotros. Si no podemos, pues le preguntamos".

S4: "A ver ¿qué alternativas tenemos? Una sería darle un "condicional" con ciertas condiciones y otra.....¿Hum?"

S3: "Y ¿por qué no le cambiamos de signo?"

S4: "Ja, ja...pues sí, de pronto".

S3: "Mire, si cambiamos el signo y mejoramos los píxeles podemos. ¿Si ve?"

S4: "Claro, hágale".

Compartir información

3 de los 6 estudiantes entrevistados coincidieron en la importancia de compartir información durante el trabajo en colaboración. Resaltan la ayuda mutua y la posibilidad de compartir fortalezas y disminuir debilidades: "Me ayudó [el trabajo en colaboración] porque personalmente a mí se me dificultaba la física, y el hecho de que tuviera unas persona al lado con quien compartir las dudas me sirvió". Más adelante comenta la misma persona: "Porque uno comparte ideas y si tenía dudas las compartíamos, las respondíamos juntas o nos dábamos la maña para sacar la respuesta". Y otro alumno hace énfasis en la importancia de complementar mutuamente la información de cada cual, ya que se equilibran diferencias. Dice: "Como no soy bueno en matemáticas y estoy con un compañero, hay probabilidad [de] que sea mejor que yo en la parte de ecuaciones que yo no tenga seguras. La otra persona me lo va a complementar y si la otra persona tiene algún problema al ver la gráfica yo le puedo ayudar en eso".

Posteriormente el mismo estudiante comenta: "Me gustó esta estrategia porque es básicamente una forma de complementar y si uno tiene a alguien que le complemente las falencias es mucho mejor".

Escuchando las grabaciones encontré que en 4 de ellas hay evidencia de que el compartir información es una constante. En la primera es evidente la complementación entre conocimientos diversos:

S1: "A mí esta ecuación no me dice nada".

S2: "Tranquilo, a mí me pasa lo mismo, pero con la gráfica".

S1: "Hagamos ambas cosas y vemos a ver si nos podemos ayudar, yo le explico la gráfica y usted me explica le ecuación".

S2: "Listo, pero acuérdese que hay que conectarlo con un pistón".

S1: "Bueno, ya veremos cuando lleguemos ahí".

En las siguientes se ve que los estudiantes exploran juntos y que no importa si durante el proceso se cometen errores. Éstos ayudan a encontrar el camino correcto:

S3: "Pero qué variable utilizamos?"

S4: "Usemos presión a ver qué nos da ¿si? Creo..."

S3: "OK, Pero ¿sí estaremos usando P como variable independiente?"

S4: "Hagámosle a ver qué nos da. ¡Huy! Mire qué gráfica tan terrible, eso no está bien".

S3: "Ah, mire, la variable independiente es volumen. ¿No ve que es un proceso isobárico y es la presión la que permanece constante?"

S4: "Claro, el que va cambiando es el volumen".

Otra pareja en las grabaciones comentó:

S5: "¿Por qué será que le doy la ecuación y cuando le digo que interprete me da error?"

S6: "Muestre a ver...claro es que la está escribiendo [la ecuación] al revés, mire que la variable independiente hay que escribirla en el comando control y si no pues hace una cosa diferente de la que queremos".

S5: "Listo, mire, ya nos aceptó los datos".

S6: "Ahora le daré la instrucción para que dibuje la gráfica...¡Huy! nos dio rarísima, ¿qué será esto?"

S5: "Espere, tranquilo......ah! pues es que estamos graficando presión contra temperatura y no presión contra volumen, ¿se da cuenta?"

S6: "Claro, listo, ya.....me imagino yo haciendo esto solo me había sacado un ojo".

S5: "Dígamelo a mí, imagínese....Ja,ja,ja".

En otra conversación llama la atención que un estudiante deja que otro lo guíe en el proceso de entender:

S7: "¿Usted ha entendido bien eso de los píxeles?"

S8: "Más o menos. ¿Qué quiere que hagamos?"

S7: "Pongamos esta gráfica como mejor distribuida".

S8: "Listo, pero hágalo usted y yo le ayudo. ¿Qué es lo que quiere?"

S7: "Mire, yo quiero cambiar el eje vertical y hacerlo más grande"

S8: "Listo, entonces lo que hay que hacer es reducir la escala".

S7: "¿Cómo? ¿Acaso no hay que agrandarla?"

S8: "¿No ve que esta vaina es al contrario?"

S7: "Pongámosle por ejemplo 0.001. Claro ahora nos da algo más decente. Listo ya entendí".

Entender en forma diferente

2 de los 6 estudiantes entrevistados dieron importancia al hecho de entender en forma diferente, ya que se da el espacio para metodologías y estilos personales distintos que pueden resultar favorables a nivel de la comprensión: "Me ayudó [el trabajo en colaboración] porque cada uno
entiende y cada uno explica en forma distinta". Otro estudiante dice: "...Pues es interesante ver el punto de vista de otra persona, cómo entiende gráficamente". Oyendo a 2 parejas de estudiantes trabajar durante la intervención, encuentro interpretaciones diferentes de los mismos fenómenos y búsquedas distintas de caminos de solución, que resultan reveladoras para el otro compañero:

S1:"La simulación está perfecta, listo".

S2: "Cómo así. ¿Ya acabamos?"

S1: "Claro ¿Qué cree que hace falta?"

S2: "No sé, la gráfica no está completa, eso no es así de simple".

S1: "Cómo que no, mire que a medida que la gráfica se va dibujando el pistón se está comprimiendo, ¿No ve que [es] un proceso isotérmico donde el calor que se pierde lo gana el trabajo?"

S2: "Yo no lo había visto de esa forma, claro, ya le entiendo".

S3: "Espere, espere. ¿Qué está haciendo?"

S4: "Pues dándole valores hasta que la gráfica me coincida".

S3: "Pero no acabaría nunca, es como armar un rompecabezas poniendo todas las fichas hasta que la que es, le coincida".

S4: "Pero, hermano, yo siempre he trabajado las gráficas así".

S3: "Pero, por qué no trata de buscar un patrón, mire que si mira uno de los ejes le da un valor y en el otro eje le da el otro valor, ya tiene los datos que necesita. Eso por ensayo y error es muy complicado".

S4: "No crea, uno resulta cogiendo mucha práctica".

S3: "Bueno, es una forma diferente de ver las cosas, piense que puede simplificar el trabajo y no es tan complicado".

Finalmente, 3 entrevistados coincidieron en que esta estrategia de trabajo y de aprendizaje no fue efectiva para ellos porque: "La verdad yo creo que este aspecto [el trabajo en colaboración] no me hizo cambio". Otro estudiante dice que a él personalmente le gusta trabajar solo, pero admite que "A otras personas les sirve más. Claro, es cuestión de comunicación."

Discusión

Los resultados de la presente investigación muestran que los estudiantes del grupo experimental lograron desarrollar mejores habilidades en el manejo de las relaciones entre ecuaciones, gráficas y funcionamiento real de fenómenos físicos, en comparación con el grupo control. Trabajar simultáneamente simulación, gráficas y ecuaciones en el programa de computador parece brindar al estudiante la posibilidad de establecer mejores conexiones entre conceptos y aplicaciones. Por otro lado, para los alumnos resulta importante someter sus opiniones y sus comprensiones acertadas, parciales o erróneas a sujetos diferentes al profesor. Compartir inquietudes y resolver dudas con sus pares, parece ser para la mayoría uno de los puntos vitales en la comprensión de los conceptos. Para mí, de lo anterior se deriva la necesidad de reflexionar acerca de mi papel como profesor. Ahora creo más importante tratar de ser un guía y un colaborador en la construcción del conocimiento de mis estudiantes, en lugar de limitarme a ser un transmisor de contenidos. El diálogo en clase debe dejar de ocurrir entre estudiante y profesor, entre el profesor y el que sabe, entre la autoridad y el subordinado, para convertirse en un diálogo entre personas que aprenden. Esto nos enseña a todos a valorar y respetar la opinión ajena y a los alumnos a valorar y respetar la de sus iguales, no sólo la de sus maestros. Pero, fundamentalmente, enriquece la construcción del conocimiento a través de la socialización de las formas de comprender.

Pienso que el estudio muestra también la importancia de la evaluación continua: en la conversación constante, tanto profesor como estudiantes están en revisión y corrección permanente del trabajo, lo que facilita un seguimiento más cercano del proceso de aprendizaje del estudiante. Esta forma de evaluación conlleva, además, a que el alumno tenga una mejor disposición para aprender, ya que equivocarse no trae consecuencias académicas negativas inmediatas. Por el contrario, verbalizar el error e identificarlo es aprender de él, y continuar el trabajo explorando resulta relevante para el aprendizaje. Hay otras cosas que quisiera hacer a partir de este pequeño estudio. Por ejemplo, hice grabaciones en tres momentos del desarrollo de la intervención, y puede resultar interesante analizar cómo se van operando los cambios en la comprensión de los estudiantes a lo largo de ella. Esto puede ayudarme en decisiones que intensifiquen el efecto, tanto de la simulación como del trabajo en colaboración en el aprendizaje de todos los alumnos. Me hubiera gustado, además, haber hecho seguimiento a uno o varios estudiantes a lo largo de los tres momentos de grabación, para describir más en detalle los cambios que se sucedieron en su aprendizaje, compararlo y encontrar mejores posibilidades aún de apoyar el aprendizaje de cada uno en particular.

Igualmente, puede resultar importante incluir más trabajo de aplicaciones durante la intervención, con el objeto de ampliar la capacidad de generalización de los estudiantes sobre los principios termodinámicos. Los trabajos finales de los integrantes del grupo experimental resultaron interesantes y variados, y trabajar más aplicaciones puede ser clave en la comprensión más amplia de este difícil tema de física. Esto podría lograrlo con un mayor uso de éste u otros programas de simulación y con la socialización de los trabajos finales.

Finalmente, me queda una gran pregunta acerca de la efectividad del uso de simulaciones y del trabajo en colaboración en el aprendizaje de otros aspectos de la física. Hasta ahora he decidido utilizar estas estrategias, y los resultados alentadores de mi estudio me estimulan a explorar con más profundidad y amplitud los beneficios tanto de los recursos informáticos como de la colaboración en el aprendizaje en la comprensión de mi área de estudio. Intensificar su uso puede resultar en una efectividad mayor en los procesos de aprendizaje de los alumnos. E investigar acerca de sus efectos y de las mejores formas de ponerlos en acción me ayudará a enfrentar dificultades que puedan aparecer al llevarlos al salón de clase.

Resultaría, por ejemplo, interesante pensar en introducir, tanto tecnología como aprendizaje en colaboración desde mucho antes en los ambientes de aprendizaje escolar. La multiplicación de aprendizajes puede ser mucho mayor así, tanto en profundidad como en el tiempo. Y trabajar con alumnos para quienes ya sean más naturales estas formas de aprender puede acelerar y aumentar las posibilidades de llegar a niveles de complejidad mucho mayores antes de la universidad. Al menos hubiera sido la solución para el único obstáculo que encontré en la puesta en práctica de mi innovación y que creo que frenó su inicio: el hecho de que algunos estudiantes no conocieran el programa y su manejo y que les costara trabajo al principio lograr una interacción social verdaderamente productiva en términos de aprendizaje.


Referencias

Alavi, M. (1994). Computer-Mediated Collaborative Learning: An Empirical Evaluation. MIS Quarterly, June, 159-174         [ Links ]

Berry, A. (1999). Helping Students Learn from Laboratry Work. Camberra: Australian Science Teachers Journal.        [ Links ]

Boix Mansilla, V. & Gardner, H. (1999). ¿Cuáles son las cualidades de la comprensión? En M. Stone (comp), Enseñanza para la comprensión. Vinculación entre la investigación y la práctica. Barcelona: Editorial Paidós.        [ Links ]

Boxtel, C. (2000). The Use of Textbooks as a Tool during Collaborative Physics Learning. The Journal of Experimental Education, 69(1), 57-76.        [ Links ]

Brown, A.H. (1999). Simulated Classrooms and Artificial Student: The Potential Effects of New Technologies on Teacher Education. Journal of Research on Computing in Education, 32(2),307-318.        [ Links ]

Buteler, L. (2001). La resolución de problemas en Física y su representación: un estudio en la escuela media. Investigación científica. Enseñanza de las Ciencias, 19(2), 285-295.        [ Links ]

Caramazza, A.; McCloskey, M. & Green, B. (1981). Naïve Beliefs in "Sophisticated" Subjects: Misconceptions about Trajectories of Objects. Cognition, 9, 117-123.        [ Links ]

Champagne, A.B.; Klopfer, L.E. & Gunstone, R.F. (1982). Cognitive Research and the Design of Scince Instruction. Educational Psychologist, 17, 31-53.        [ Links ]

Di Sessa, A. (1998). Knowledge in Pieces. En G. Forman & Pufall, P.B. (Eds.), Constructivism in the Computer Age. Hillsdale, N.J.: Lawrence Erlbaum Associates.        [ Links ]

Edelson D. (1998). Realising Authentic Science Learning through the Adaptation of Scientific Practice. Illinois: Northwestern University.        [ Links ]

Hargis, J. (2001). Can Students Learn Science Using the Internet? Journal of Research on Computing in Education, 33(4), 475-487.        [ Links ]

Hewson, P. & A´Becket Hewson, M. (1984). The Role of Conceptual Conflict in Conceptual Change and the Design of Science Instruction. Instructional Science 13,1-13.        [ Links ]

Klein, J. & Doran, M. (1999). Implementing Individual and Small Group Learning Structures with a Computer Simulation. Educational Technology, Research and Development, 47, 97-110.        [ Links ]

Laffey, J.; Tupper, T.; Musser, D. & Wedman, J. (1998). A Computer-Mediated Support System for Project Based Learning. Educational Technology Research and Development, 46 (1), 73-86.        [ Links ]

Lapp, D. (2000). Using Data – Collection Devices to Enhance Students Understanding. Mathematics Teachers , 93(6), 504-510.        [ Links ]

Linn, M. (1986). Science. En R. Dillon & R.J. Sternberg (Eds), Cognition and Instruction. New York: Academic Press.        [ Links ]

Linn, M. (1999). The impact of Technology on Science Instruction: Historical Trends and Current Opportunities. California: University of California, Berkeley.        [ Links ]

Loverude, M. & Colaboradores (2001). Student Understanding of the first law of Thermodynamics: Relating Work to the Adiabatic Compression of an Ideal Gas. Seattle: Department of Physics, University of Washington         [ Links ]

Mac Farlane, A. & Friedler, Y. (1998). You Want it, When you Want it: The Role of Portable Computers in Science Education. Cambridge: Homerton College, The Hebrew University of Jerusalem.        [ Links ]

Perkins, D. (1999). ¿Qué es la comprensión? En M. Stone (comp), Enseñanza para la comprensión. Vinculación entre la investigación y la práctica. Barcelona: Editorial Paidós.        [ Links ]

Springer, L.; Stanne, M. & Donovan, S. (2000). Effects of Small-Group Learning on Undergraduates in Science, Mathematics, Engineering, and Technology: A - Analysis. Review of Educational Research, 69(1), 21-51.        [ Links ]

Songer, N. (1998). Can Technology Bring Students Closer to Science? Michigan: University of Michigan, Ann Arbor.        [ Links ]

Tao, P. & Gunstone, R. (1999). The Process of Conceptual Change in Force and Motion during Computer Supported Physics Instruction. Journal of Research Science Teaching, 36(7), 859-882.        [ Links ]

Uribe, D.; Klein, J.; Sullivan, H. (2003). The Effect of Computer-Mediated Collaborative Learning on Solving Ill Defined Problems. Educational Technology, Research and Development, 51, 5-15.        [ Links ]

White, B.(1999). Computer Microworlds and Scientific Inquiry: an Alternative Approach to Science Education. California: University of California, Berkeley.         [ Links ]

Creative Commons License Todo el contenido de esta revista, excepto dónde está identificado, está bajo una Licencia Creative Commons