Introducción
La depresión es considerada un trastorno debilitante caracterizado por un conjunto de síntomas cognitivos, afectivos y somáticos, producto de interpretaciones negativas de las experiencias individuales que retroalimentan dicha sintomatología y que se refuerzan entre sí (Beck, 2008).
A nivel mundial, se estima que cerca del 4.4 % de la población sufre de depresión, y que, debido a que provoca alteraciones en el ámbito personal, académico, laboral y familiar de quienes la padecen, se le debe considerar como un problema de salud pública (World Health Organization [WHO], 2020). Adicional a esto, se ha encontrado que es más prevalente en mujeres que en varones, con 5.1 % y 3.6 %, respectivamente (WHO, 2017).
En el Perú, la depresión aparece como en primer lugar dentro de los trastornos psiquiátricos que producen pérdida de años de vida saludables (Ministerio de Salud [MINSA], 2018), ya que está presente en cerca del 4.8 % de la población (WHO, 2017). Al igual que en otras regiones, es más frecuente en mujeres (10 %) que en varones (3 %), por lo cual es uno de los desórdenes mentales prioritarios en cuanto a su atención y abordaj e (MINSA, 2018; Vega, 2018).
En los últimos años se han encontrado relaciones significativas de la depresión con el uso de redes sociales en jóvenes y la adicción a internet y al celular en universitarios (Lin et al., 2016; Matar Boumosleh & Jaalouk, 2017; Primack et al., 2017; Shensa et al., 2017; Younes et al., 2016); con el aislamiento social y la soledad en jóvenes (Matthews et al., 2016); con el bajo desempeño académico, la percepción negativa del cuerpo y la actividad física reducida (Ngin et al., 2018); con la falta de compromiso social, el bajo soporte familiar, la enfermedad crónica y el sueño alterado (Cong et al., 2015); con el incremento de edad, el nivel socioeconómico bajo, el sexo, el sobrepeso y la obesidad (Abdel Wahed & Hassan, 2017); con la diabetes (Lee et al., 2017); y con el miedo al covid-19 (Wang et al., 2020).
Por tanto, se han diseñado diversos instrumentos para medir la depresión, entre los cuales destacan: (a) el Inventario de Depresión Estado/Rasgo (Spielberger, 1983), (b) la Escala de Valoración de Hamilton (Hamilton, 1960), (c) la Depression Anxiety Stress Scale (DASS; Lovibond & Lovibond, 1993), (d) la Escala de Depresión de Zung (Zung, 1986), (e) la Hospital Anxiety and Depression Scale (Zigmond & Snaith, 1983), (f) la Kutcher Adolescent Depression Scale (Kutcher & Marton, 1989), (g) la Escala de Depresión del Centro para Estudios Epidemiológicos (CES-D; Radloff, 1991), (h) la Escala de Síntomas de los Trastornos de Ansiedad y Depresión (ESTAD; Sandín et al., 2018), (i) la Escala de Depresión de Reynolds (EDAR; Reynolds, 1987), y (j) el Inventario de Depresión de Beck (BDI-II; Beck et al., 1996; Brenlla & Rodríguez, 2006), el cual ha sido ampliamente utilizado para la evaluación de la depresión en diferentes poblaciones (Brouwer et al., 2013; Erford et al., 2016; Strunk & Lane, 2017).
Específicamente, el BDI-II se basa en la teoría cognitiva (Clark et al., 1999) y es la tercera versión del instrumento, publicada con ajustes después de múltiples revisiones en las versiones de años anteriores: el BDI (Beck et al., 1961) y el BDI-IA (Beck & Steer, 1993). Este inventario, a diferencia de la primera y segunda versión, incorpora nuevos indicadores de depresión -agitación, dificultades para concentrarse, desvalorización y pérdida de energía- e incrementa el criterio de tiempo a dos semanas con el fin de ajustarse a los criterios para depresión del DSM-IV. Sus propiedades psicométricas originales se demostraron con población clínica y estudiantil (Beck et al., 1996; Brenlla & Rodríguez, 2006), en donde se hallaron dos dimensiones: somático-afectivo y cognitivo para la muestra de población clínica, y cognitivo-afectivo y somático para la muestra de estudiantes (Beck et al., 1996).
No obstante, aunque cuenta con dos dimensiones, los autores recomiendan que la interpretación se haga mediante la suma de todos los ítems y no obteniendo puntajes para cada dimensión (Steer & Clark, 1997). De hecho, desde un punto de vista estadístico, el porcentaje de varianza total explicada del segundo factor suele ser muy bajo, lo cual no justifica el cálculo de puntajes por dimensión (véase Brouwer et al., 2013; Carranza, 2013, Sánchez-Villena & Farfán, 2019; Sanz & García-Vera, 2013; Steer & Clark, 1997).
Ahora bien, pese a que es uno de los instrumentos más utilizados para la medición de la depresión, la estructura interna del BDI-II es discutida incluso en la actualidad, pues existen estudios que reportan diferentes estructuras factoriales según la población o según los países donde se llevaron a cabo las investigaciones. Por ejemplo, en Indonesia se ha encontrado que, en población general y en pacientes coronarios, el BDI-II tiene una estructura tridimensional (Ginting et al., 2013); en España se encontró bidimensionalidad en población general (Sanz, Perdigón et al., 2003), en universitarios (Sanz, Navarro et al., 2003) y en población con trastornos depresivos (Sanz et al., 2005), y otras dos investigaciones con población clínica encontraron que ajusta mejor a un modelo bifactor (del Pino et al., 2012; Sanz & García-Vera, 2013) -indicador a favor de la unidimensionalidad-; en China se halló un modelo bifactor con tres factores y uno general en adolescentes (Byrne et al., 2004); y con población clínica en Alemania (Heinrich et al., 2018), Londres (McElroy et al., 2018) y Países Bajos (Brouwer et al., 2013), el modelo bifactor tuvo mejores bondades de ajuste, llegando a señalar unidimensionalidad.
En Latinoamérica el panorama es similar, pues en México los resultados indican que el BDI-II cuenta con una estructura bidimensional tanto para población general como para universitarios (Estrada et al., 2014; Rosas-Santiago et al., 2020), adolescentes (Contreras-Valdez et al., 2015) y cuidadores infantiles (Toledano-Toledano & Contreras-Valdez, 2018); en Brasil, con población adulta, se halló que el modelo bifactor con dos dimensiones y uno general tuvo mejor ajuste, siendo invariante según el sexo (Faro & Pereira, 2020); en República Dominicana la estructura bifactor con tres factores específicos ajustaba mejor (García-Batista et al., 2018), indicando unidimensionalidad del constructo; y en el Perú se han reportado estructuras bidimensionales en adolescentes (Rodríguez & Farfán, 2015) y en universitarios (Carranza, 2013; Sánchez-Villena & Farfán, 2019), aunque en población clínica se ha encontrado una estructura unidimensional (Barreda, 2019), no obstante, el estudio de Sánchez-Villena & Farfán (2019) modeló una estructura bifactor exploratoria, indicando a favor de la unidimensionalidad.
Teniendo en cuenta lo anterior, podríamos señalar que, si bien la estructura interna del BDI-II es una cuestión que sigue en debate, existe gran evidencia en la literatura para favorecer la unidimensionalidad del constructo (Brouwer et al., 2013; Heinrich et al., 2018; Huang & Chen, 2015; McElroy et al., 2018), y, por lo tanto, se podría utilizar el BDI-II como instrumento de medición de la depresión hallando una puntuación total.
Ante tal discusión, la presente investigación tiene como objetivo principal analizar la dimensionalidad del BDI-II en población general peruana. Para ello, primero se modelan las estructuras factoriales expuestas anteriormente, luego se selecciona aquel modelo que cuente con mejor ajuste y parsimonia, y posteriormente se prueba su invarianza según el sexo, se calcula la fiabilidad del inventario y se presentan los datos normativos para la población general peruana.
La justificación de este estudio obedece a tres razones: primero, porque el BDI-II es uno de los instrumentos más utilizados para la valoración de la severidad de la depresión a nivel mundial (Huang & Chen, 2015) en múltiples muestras, sean clínicas o no; segundo, porque aún no se tiene claridad de su estructura interna en Perú, menos aún en población general; y tercero, porque es importante contar con un instrumento de evaluación con propiedades psicométricas adecuadas si tenemos en cuenta que en el Perú la depresión se encuentra en primer lugar dentro de los trastornos psiquiátricos que producen pérdida de años de vida saludables (MINSA, 2018), lo cual ayudaría a que los profesionales de la salud mental evalúen la severidad de la depresión con mayor precisión en la población peruana.
Método
Tipo de estudio
Esta investigación es de tipo instrumental (Montero & León, 2005), pues se analizan diferentes estructuras factoriales de un instrumento con el propósito de demostrar las adecuadas propiedades psicométricas del Inventario de Depresión de Beck (BDI-II).
Participantes
En la presente investigación se recolectaron los datos de 2478 personas. Sin embargo, se excluyeron 813 respuestas: 45 no accedieron a participar; 695 eran menores de edad y 73 refirieron vivir en el extranjero. En consecuencia, la muestra estuvo conformada por 1665 participantes (863 mujeres y 802 hombres) con edades de entre 18 y 54 años (M = 24.99, DE = 8.73), procedentes, predominantemente, de cuatro regiones del Perú (75.92 % de Cajamarca, 11.05 % de Lima, 6.42 % de La Libertad y 2.62 % de Lambayeque). El 37.9 % eran estudiantes, mientras que el 62.1 % eran trabajadores de diversos rubros. Cabe señalar que, para recolectar los datos, se utilizó un muestreo no probabilístico por bola nieve mediante el software Formularios de Google, cuyo enlace fue compartido mediante redes sociales digitales.
Instrumentos
Inventario de Depresión de Beck (BDI-II)
Este inventario fue diseñado por Beck et al. (1996) con el objetivo de medir la severidad de la sintomatología depresiva a través de 21 ítems agrupados en dos dimensiones denominadas somático-afectivo y cognitivo para la muestra de población clínica, y cognitivo-afectivo y somático para estudiantes. El BDI-II tiene cuatro opciones en escala de tipo Likert, donde 0 denota una menor gravedad del síntoma y 3 una mayor gravedad de este.
En la presente investigación se utilizó la versión traducida por Brenlla y Rodríguez (2006), que ha sido validada en Perú mediante análisis factorial exploratorio (AFE) y confirmatorio (AFC). Los hallazgos sobre esta versión son diversos: en primer lugar, los estudios de Carranza (2013) y Rodríguez y Farfán (2015) señalan una solución factorial de dos dimensiones correlacionadas, cuyos componentes se denominan somático-motivacional y cognitivo-afectivo; en segundo lugar, en la investigación de Barreda (2019) se encontró una estructura unidimensional; y, finalmente, en el análisis de Sánchez-Villena y Farfán (2019) se halló en un modelo bifactor exploratorio con dos dimensiones oblicuas -somático y cognitivo-afectivo-, además, demostraron validez convergente y divergente correlacionando las puntuaciones del BDI-II con la Escala de Depresión de Reynolds (r = .708) y la Escala de Felicidad de Alarcón (r = .585).
En cuanto a la confiabilidad del BDI-II en el Perú, Carranza (2013) reportó un αtotal = .878; Rodríguez y Farfán (2015) hallaron un αtotal = .891, αcognitivo-afectivo = .837 y αsomático-motivacional = .808; Barreda (2019) señaló un αtotal= 930; y Sánchez-Villena y Farfán (2019) encontraron un ωh = .892, ωsomático = .176 y ωcognitivo-afectivo = .068.
Procedimiento
Debido a la pandemia y las restricciones sociales, el BDI-II fue administrado virtualmente, en abril del 2020, a través del software Formularios de Google. El formulario contenía un apartado de consentimiento informado que pedía aceptar o no participar de la investigación, donde se detallaba el propósito del estudio y el tiempo estimado de evaluación. Allí, se señaló que la participación era voluntaria, anónima y que los datos recolectados se utilizarían exclusivamente con fines académicos. Asimismo, el formulario contenía preguntas sociodemográficas -sexo, edad, región y ocupación- previas a los ítems del BDI-II. Esta investigación no requirió la aprobación de un comité de ética, ya que se trata de un estudio de tipo instrumental, que reúne datos totalmente anónimos a través de internet y no presenta ningún riesgo para los participantes. No obstante, sí se siguieron las pautas éticas del Colegio de Psicólogos del Perú y de la Declaración de Helsinki, por lo cual se cuenta con el soporte de la Universidad Privada del Norte y de Forum: Centro de Estudios Familiares.
El enlace del formulario fue compartido de manera abierta mediante redes sociales -Facebook y WhatsApp-. Para evitar que los participantes respondieran varias veces, se configuró el formulario para limitar a una única respuesta. Como criterios de inclusión se consideraron las respuestas de quienes tenían más de 18 años y que vivieran en cualquier región de Perú. Se excluyeron las respuestas de menores de edad y de quienes refirieron vivir en el extranjero.
Análisis de datos
El análisis estadístico se llevó a cabo con el software estadístico R, versión 3.6.3 (R Core Team, 2020), específicamente con los paquetes Lavaan, versión 0.6-7 (Rosseel, 2012), y SemTools, versión 0.5 (Jorgensen et al., 2021), mediante el estimador WLSMV, debido a la ordinalidad de los datos. Para evaluar el mejor ajuste del modelo se calcularon los índices robustos de CFI (> .95), TLI (> .95) y RMSEA (< .06), siguiendo las recomendaciones de Hu y Bentler (1999).
Se modelaron catorce estructuras factoriales, extraídas de los antecedentes nacionales e internacionales, que se agrupan en modelos: (a) unidimensionales, (b) bidimensionales, (c) tridimensionales, (d) tridimensionales de segundo orden, y (e) bifactor -factores específicos ortogonales y uno general-. Estos dos últimos no convergieron.
Debido a que los modelos restantes mostraron índices buenos y muy parecidos, se compararon las cargas factoriales con el fin de escoger el más adecuado, teniendo en cuenta, además, la teoría y los hallazgos en investigaciones anteriores; finalmente, se optó por la unidimensionalidad. Luego, se calculó la invarianza factorial según el sexo, siguiendo las recomendaciones actualizadas de Svetina et al. (2020) para datos ordinales, cuyos puntos de corte son ACFI ≥ .01 y ARMSEA ≤ .015. Para ello, primero se estimó un modelo sin restricciones; y después, de manera progresiva, se estimaron modelos con restricciones en los umbrales, cargas factoriales e interceptos.
Asimismo, se calcularon las medias latentes (Dimitrov, 2010) para varones y mujeres con media recortada y el coeficiente xi (ξ) como tamaño del efecto, por ser estimadores robustos ante la no normalidad. En seguida, se obtuvo la confiabilidad con el coeficiente omega por la naturaleza ordinal de los datos (Green & Yang, 2009). Finalmente, se reportaron los datos normativos con percentiles (Pc), junto al coeficiente K2 de Livingston, para evaluar la confiabilidad de los puntos de corte, ya que este es un método adecuado cuando las puntuaciones no siguen una distribución normal, donde se esperan valores superiores a .75 (Dominguez-Lara, 2016; Gempp & Saiz, 2013; Livingston, 1972). Para ello, se tuvo en cuenta las categorías de bajo (< Pc 25), alto (> Pc 75) y severo (> Pc 90).
Resultados
En la Tabla 1 se observa que el ítem con mayor promedio corresponde a cambios en el apetito (M= 0.55; DE=0.75). Respecto a la normalidad univariada, se muestran valores superiores al ± 1.5 en la mayoría de los reactivos en curtosis y asimetría, especialmente en el ítem pesimismo (g1 = 3.27; g2 = 11.65). Lo anterior denota una tendencia a puntuaciones bajas por la predominancia de puntajes positivos, y se concluye la no existencia de normalidad.
Ítems | M | DE | g1 | g2 |
---|---|---|---|---|
1. Tristeza. | 0.25 | 0.55 | 2.62 | 7.89 |
2. Pesimismo. | 0.17 | 0.49 | 3.27 | 11.65 |
3. Fracaso. | 0.21 | 0.56 | 2.82 | 7.54 |
4. Pérdida de placer. | 0.38 | 0.63 | 1.79 | 3.28 |
5. Sentimientos de culpa. | 0.39 | 0.59 | 1.57 | 3.05 |
6. Sentimientos de castigo. | 0.35 | 0.73 | 2.38 | 5.42 |
7. Disconformidad con uno mismo. | 0.22 | 0.58 | 2.98 | 8.81 |
8. Autocrítica. | 0.43 | 0.75 | 1.63 | 1.72 |
9. Pensamientos o deseos suicidas. | 0.18 | 0.45 | 2.93 | 10.16 |
10. Llanto. | 0.47 | 0.96 | 1.85 | 1.88 |
11. Agitación. | 0.33 | 0.66 | 2.35 | 5.7 |
12. Pérdida de interés. | 0.34 | 0.66 | 2.22 | 5.01 |
13. Indecisión. | 0.39 | 0.74 | 2.11 | 4.13 |
14. Desvalorización. | 0.20 | 0.55 | 2.93 | 8.33 |
15. Pérdida de energía. | 0.42 | 0.65 | 1.63 | 2.85 |
16. Cambios en los hábitos de sueño. | 0.82 | 0.84 | 0.85 | 0.17 |
17. Irritabilidad. | 0.29 | 0.57 | 2.17 | 4.97 |
18. Cambios en el apetito. | 0.55 | 0.75 | 1.40 | 1.64 |
19. Dificultad de concentración. | 0.48 | 0.71 | 1.39 | 1.31 |
20. Cansancio o fatiga. | 0.37 | 0.65 | 1.92 | 3.75 |
21. Pérdida de interés en el sexo. | 0.31 | 0.72 | 2.39 | 4.95 |
Nota. M = media aritmética; DE = desviación estándar; g1 = asimetría, g2 = curtosis.
Análisis factorial confirmatorio
Los resultados del AFC se muestran en la Tabla 2, donde se puede observar que los modelos bidimensionales oblicuos demuestran buenas bondades de ajuste, de los cuales destacan M11 (CFI = .976; TLI = .973; RMSEA = .043; SRMR = .041) y M14 (CFI = .981; TLI = .979; RMSEA = .036; SRMR = .037), con correlaciones interfactoriales de Φ = .883 y Φ = .790, respectivamente. Por ello, se modelaron estructuras bifactor y de segundo orden, aunque no convergieron. Por otro lado, el M12 -unidimensional con 21 ítems- también evidencia bondades de ajuste adecuados (CFI = .955; TLI = .950; RMSEA = .055; SRMR = .054).
Modelo | Autores | Estructura* | CFI | TLI | RMSea | SRMr | Φ |
---|---|---|---|---|---|---|---|
M1 | Sanz, Perdigón et al. (2003). | Bidimensional | .962 | .958 | .051 | .050 | .919 |
M2 | Sanz, Navarro et al. (2003). | Bidimensional | .962 | .958 | .051 | .049 | .912 |
M3 | Sanz et al. (2005). | Bidimensional | .966 | .962 | .048 | .048 | .899 |
M4 | Sanz y García-Vera (2013). | Bifactor (2 factores) | .961 | .956 | .052 | .051 | .926 |
M5 | del Pino et al. (2012). | Bifactor (2 factores) | No converge | ||||
M6 | Byrne et al. (2004). | Bifactor (3 factores) | No converge | ||||
M7 | Brouwer et al. (2013). | Bifactor (2 factores) | No converge | ||||
M8 | Contreras-Valdez et al. (2015). | Bidimensional | .966 | .962 | .048 | .048 | .887 |
M9 | Carranza (2013). | Bidimensional | .958 | .953 | .054 | .052 | .939 |
M10 | Sánchez-Villena y Farfán (2019). | Bifactor (2 factores) | No converge | ||||
M11 | Rodríguez y Farfán (2015). | Bidimensional | .976 | .973 | .043 | .041 | .883 |
M12 | Barreda (2019). | Unidimensional | .955 | .950 | .055 | .054 | - |
M13 | Toledano-Toledano y Contreras-Valdez (2018). | Bidimensional | .975 | .972 | .041 | .041 | .865 |
M14 | Rosas-Santiago et al. (2020). | Bidimensional** | .981 | .979 | .036 | .037 | .790 |
Nota. * Si bien la estructura puede ser la misma, los ítems que cargan en cada factor son distintos. ** Este modelo tiene los ítems 12 y 13 cruzados y residuales correlacionados en los ítems 16 y 18. Φ = correlaciones interfactoriales.
Si bien todos los modelos probados indican un buen ajuste, en la Tabla 3 solo se muestran las cargas factoriales de los modelos M11, M12, M13 y M14. Se seleccionó el M12 por tratarse del único modelo unidimensional en Perú; mientras que M11, M13 y M14 fueron seleccionados por tener los mejores índices de bondad de ajuste. Los resultados muestran que M11, compuesto por los factores cognitivo-afectivo y somático-motivacional, tiene saturaciones con rangos entre .626 (cambios en los hábitos de sueño) y .837 (desvalorización). Respecto a M12, la menor (.536) y mayor (.804) carga factorial la tienen el ítem 21 (pérdida de interés en el sexo) y 14 (desvalorización), respectivamente. Sucede lo mismo en M13, donde la menor carga factorial corresponde al ítem 21 (.550) y la mayor al ítem 14 (.848).
Ítems | M11 | M12 | M13 | M14 | |||
---|---|---|---|---|---|---|---|
CoA | SoM | Dep | Cog | SoA | CoA | SomV | |
1. Tristeza. | .666 | .649 | .681 | .672 | |||
2. Pesimismo. | .729 | .707 | .739 | .730 | |||
3. Fracaso. | .779 | .756 | .789 | .779 | |||
4. Pérdida de placer. | .732 | .702 | .718 | .730 | |||
5. Sentimientos de culpa. | .747 | .733 | .770 | .759 | |||
6. Sentimientos de castigo. | - | .683 | .717 | .707 | |||
7. Disconformidad con uno mismo. | .807 | .781 | .817 | .804 | |||
8. Autocrítica. | .659 | .640 | .675 | .664 | |||
9. Pensamientos o deseos suicidas. | .707 | .688 | .723 | .713 | |||
10. Llanto. | .664 | .644 | .658 | .667 | |||
11. Agitación. | .673 | .658 | .671 | .688 | |||
12. Pérdida de interés. | .761 | .740 | .756 | .318 | .458 | ||
13. Indecisión. | .796 | .773 | .791 | .507 | .301 | ||
14. Desvalorización. | .837 | .807 | .848 | .836 | |||
15. Pérdida de energía. | .805 | .781 | .795 | .815 | |||
16. Cambios en los hábitos de sueño. | .626 | .606 | .619 | .620 | |||
17. Irritabilidad. | .754 | .735 | .750 | .769 | |||
18. Cambios en el apetito. | .693 | .683 | .696 | .700 | |||
19. Dificultad de concentración. | .770 | .753 | .768 | .788 | |||
20. Cansancio o fatiga. | .805 | .786 | .799 | .817 | |||
21. Pérdida de interés en el sexo. | .536 | .550 | .564 | ||||
ω | .850 | .870 | .929 | .849 | .882 | .741 | .685 |
Nota. CoA = Cognitivo-afectivo. SoM = Somático-motivacional. Cog = Cognitivo. SoA = Somático-afectivo. Dep = Depresión. SomV = Somático-vegetativo. ω = Coeficiente omega.
En cuanto al M14, la mayor saturación corresponde al ítem 14 (desvalorización), y la menor al ítem 13 (indecisión); es importante aclarar que M14 tiene ítems cruzados (12 y 13), pero se observa que el ítem 13 (indecisión) tiene más carga en la dimensión cognitivo-afectiva, mientras que el ítem 12 (pérdida de interés) tiene más carga en la dimensión somática-vegetativa.
Finalmente, la confiabilidad fue adecuada para los cuatro modelos, pues superan el .70, a excepción de la dimensión somática-vegetativa de M14, la cual se encuentra ligeramente por debajo de dicho valor. Lo anterior, sumado a que las cargas factoriales cruzadas son < .40, serían razones para descartar a M14. Por tanto, se puede concluir que las saturaciones son similares y que los tres primeros modelos cuentan con buena consistencia interna.
Invarianza factorial
El análisis de la invarianza factorial se llevó a cabo según el sexo para el modelo unidimensional del BDI-II. Esta decisión responde principalmente a dos razones. La primera es que existe suficiente literatura a favor de la unidimensionalidad del inventario, pues no se justifica la interpretación de dos dimensiones (véase Brouwer et al., 2013; Sanz & García-Vera, 2013). De hecho, los antecedentes nacionales señalan que la segunda dimensión solo explica entre el 6 % y el 8 % de la varianza total (Carranza, 2013; Sánchez-Villena & Farfán, 2019). La segunda razón es que la unidimensionalidad evita confusiones en la interpretación de los puntajes y es más coherente con la idea original de Beck et al. (1996), quienes señalan que la interpretación del BDI-II se realiza sumando los 21 ítems, lo cual da lugar a una puntuación global. Incluso Steer y Clark (1997) recomiendan no calcular puntajes separados por escala.
Por otra parte, los cambios entre M1 y M2 fueron de ΔCFI = -.001 y ΔRMSEA=-.001, lo cual denota invarianza en los umbrales. Del mismo modo, las variaciones en el CFI y el RMSEA del M3 y M2 fueron de ΔCFI = .002 y ΔRMSEA=-.002, respectivamente; por lo tanto, las cargas factoriales son invariantes. Finalmente, las restricciones en los interceptos muestran un ΔCFI = .004 y un ΔRMSEA = -.004. Ante ello, se podría concluir que el modelo unidimensional del BDI-II es invariante según el sexo. Finalmente, se estimaron las medias latentes, donde se halló un valor mayor en mujeres (M = 6.42) que en hombres (M = 4.66), pero con un tamaño del efecto bajo ξ = .173).
Datos normativos
Debido a que la distribución de las puntuaciones totales del BDI-II no cumplen con el criterio de normalidad (SW (1664) = .820, p < .001), se calcularon baremos con los percentiles y el coeficiente K2 para la confiabilidad de los puntos de corte. Como se muestra en la Tabla 5, las personas que alcancen un puntaje < 1 tendrían un nivel de depresión bajo (< Pc 25); quienes tengan puntajes > 11 tendrían un nivel alto de depresión (> Pc 75); y quienes obtengan puntajes ≥ 19 mostrarían depresión severa (> Pc 90) y, por lo tanto, estarían en riesgo. Cabe mencionar que todos los puntos de corte tienen una confiabilidad adecuada, pues el coeficiente K2 de Livingston es > .75 (Gempp & Saiz, 2013). En tal sentido, esta clasificación es más confiable a medida que el punto de corte se aleje del promedio.
Pc | PD | K2 |
---|---|---|
25 | 1 | .880 |
30 | 2 | .866 |
40 | 3 | .850 |
45 | 4 | .835 |
50 | 5 | .822 |
55 | 6 | .812 |
60 | 7 | .806 |
65 | 8 | .806 |
70 | 9 | .811 |
75 | 10 a 11 | .821-.834 |
80 | 12 a 13 | .849-.864 |
85 | 14 a 15 | .879-.892 |
90 | 16 a 19 | .905-.933 |
95 | 20 a 24 | .940-.961 |
99 | 25 a 37 | .964-.986 |
Nota. Pc = percentil; PD = puntaje directo; K2 = coeficiente de Livingston.
Discusión
El objetivo principal de esta investigación fue analizar la dimensionalidad del BDI-II en población general peruana por ser uno de los instrumentos más utilizados para medir la severidad de la depresión en diversas poblaciones alrededor del mundo.
Respecto a las evidencias de la estructura interna, se probaron catorce modelos distintos, obtenidos de los antecedentes. Los resultados mostraron que las estructuras bifactor y de segundo orden presentaron problemas de convergencia, y por tal razón fueron descartados. Esto coincide con hallazgos previos (Huang & Chen, 2015), donde quedan solo los modelos bidimensionales correlacionados. Es importante señalar que dichas correlaciones fueron altas (véase Tabla 2) y guardan coherencia con los hallazgos de otras investigaciones (Carranza, 2013; Rodríguez & Farfán, 2015; Sánchez-Villena & Farfán, 2019; Sanz & García-Vera, 2013; Sanz et al., 2005; Sanz, Navarro, et al., 2003; Sanz, Perdigón, et al., 2003), lo cual ha llevado a plantear que la segunda dimensión no estaría justificada (Sanz & García-Vera, 2013) y, por lo tanto, que el BDI-II reflejaría unidimensionalidad (Brouwer et al., 2013; Heinrich et al., 2018; Huang & Chen, 2015; McElroy et al., 2018; Sanz & García-Vera, 2013). Incluso, los antecedentes nacionales indican que la segunda dimensión explica una proporción muy pequeña -entre 6 y 8 %- de la varianza total (Carranza, 2013; Sánchez-Villena & Farfán, 2019), por lo que se reafirma la no incorporación de un factor adicional, en concordancia con las conclusiones de los estudios señalados previamente.
Otra de las razones para optar por la unidimensionalidad es que el modelo sería más parsimonioso, pues los antecedentes señalan que las cargas factoriales son inestables, en el sentido de que no siempre los mismos ítems pertenecen a la misma dimensión; incluso se han reportado cargas cruzadas (Rosas-Santiago et al., 2020). Esto da lugar a confusiones al momento de interpretar los puntajes y denota un problema de ambigüedad en el significado de cada dimensión. Además, la unidimensionalidad tendría mayor coherencia con lo teórico, pues el BDI-II originalmente "fue diseñado e interpretado como un instrumento unidimensional referido al criterio" (Erford et al., 2016, p. 22). De hecho, el manual señala que, para interpretar los resultados, se suman los 21 ítems de forma global, lo cual da lugar a un puntaje total, cuyos rangos son mínimo, leve, moderado y severo (Beck et al., 1996; para mayor detalle, véase también Brenlla & Rodríguez, 2006). Además, Steer y Clark (1997) desaconsejan la interpretación mediante el cálculo de puntajes separados por dimensiones. En consecuencia, los resultados del presente estudio apoyan la hipótesis de que el BDI-II tiene una estructura de un solo factor con 21 ítems, cuyas bondades de ajuste son buenas, en concordancia con la investigación de Barreda (2019).
Por otro lado, la consistencia interna se calculó con el coeficiente omega (Green & Yang, 2009), el cual mostró valores de œ = .741 (cognitivo-afectivo) y ω = .685 (somático-vegetativo) en M14, con los coeficientes más bajos; mientras que M12 (unidimensional) mostró el valor más alto (ω = .929). Cabe señalar que M14 podría tener los coeficientes más bajos debido a que las cargas factoriales de los ítems 12 y 13 pertenecen a ambas dimensiones (Rosas-Santiago et al., 2020).
Dadas las razones anteriores, se eligió el modelo unidimensional para probar la invarianza factorial según el sexo, y los resultados mostraron que la estructura de una dimensión del BDI-II es invariante tanto para hombres como para mujeres. En consecuencia, se calcularon las medias latentes (Dimitrov, 2010), en las cuales se encontró que las mujeres tienden a mayores puntuaciones respecto de los hombres, aunque el tamaño del efecto fue pequeño, lo cual coincide con los hallazgos en estudios anteriores (Abdel Wahed & Hassan, 2017; MINSA, 2018; Vega, 2018; WHO, 2017).
Con respecto a los datos normativos, se calcularon los puntos de corte a través de percentiles, junto con el coeficiente K2 de Livingston, con el propósito de brindar mayor precisión al evaluar a las personas y medir la severidad de la depresión. Esto tiene implicaciones prácticas, ya que el personal de salud -psicólogos o psiquiatras- puede hacer uso de dichas puntuaciones como medida de tamizaje en su práctica clínica.
En cuanto a las limitaciones del estudio, destaca el hecho de no haber seleccionado la muestra de manera aleatoria, lo cual puede considerarse en futuras investigaciones. También, la invarianza factorial podría llevarse a cabo comparando el modelo según la edad y probando la invarianza longitudinal, lo que complementaría los resultados hallados en esta investigación, pues se ha encontrado que la depresión podría incrementarse con la edad (Abdel Wahed & Hassan, 2017). Finalmente, en este estudio no se presentaron evidencias de validez basadas en la relación con otras variables, por lo tanto, se sugiere la implementación de investigaciones que determinen la validez convergente y divergente del inventario.
A modo de conclusión, el BDI-II ha demostrado adecuadas propiedades psicométricas para el modelo unidimensional, ya que esta estructura facilita su interpretación y uso para labores de tamizaje, incluso para personal de salud con menor capacitación en la administración del instrumento. Por lo tanto, se debe interpretar de manera general, tal como lo sugiere el manual original (Beck et al., 1996; Brenlla & Rodríguez, 2006; Steer & Clark, 1997), y siguiendo los puntos de corte planteados en la Tabla 5. En este sentido, los hallazgos indican que el BDI-II parece ser un instrumento apropiado para medir y evaluar la severidad de la depresión en población general peruana, lo cual puede ser útil para psicólogos o psiquiatras en su práctica clínica.