SciELO - Scientific Electronic Library Online

Home Pagealphabetic serial listing  

Services on Demand



Related links

  • On index processCited by Google
  • Have no similar articlesSimilars in SciELO
  • On index processSimilars in Google


Revista Facultad Nacional de Agronomía Medellín

Print version ISSN 0304-2847

Rev. Fac. Nac. Agron. Medellín vol.65 no.2 Medellín June/Dec. 2012





Nubia Estella Cruz Casallas1; Pablo Emilio Cruz Casallas2 and Héctor Suárez Mahecha3


1 Agronomist Engineer. Universidad de los Llanos - Instituto de Acuicultura de los Llanos - Grupo de Investigación sobre Reproducción y Toxicología de Organismos Acuáticos (GRITOX). Vía Puerto López km 12. Meta, Colombia. <>
2 Titled Professor. Universidad de los Llanos - Instituto de Acuicultura de los Llanos - Grupo de Investigación sobre Reproducción y Toxicología de Organismos Acuáticos (GRITOX). Vía Puerto López km 12, Meta, Colombia. <>
3 Associate Professor. Universidad Nacional de Colombia - Sede Bogotá - Instituto de Ciencia y Tecnología de Alimentos. Carrera 30 No. 45-03, Bogotá, Colombia. <>


Received: September 04, 2012; accepted: October 16, 2012.


Abstract. One of the most consumed fish in the world is Silurid, also called "leather fish" or catfish, whose main characteristic is the absence of intramuscular bones and scales, as well as its high productivity. In recent years, the nutritional characterization of the meat of some of these species has been carried out, finding that, although the proximal composition is within the broad ranges for fish, the fat content provides a lower proportion of polyunsaturated fatty acids (PUFA) particularly as regards omega-3 (w-3), furthermore the w-6/w-3 ratio is within the proscriptions of the World Health Organization (WHO) for many of these species of catfish. Likewise, the contents of eicosapentaenoic acid (EPA), docosahexaenoic acid (DHA) and amino acids, minerals and vitamins reveal a high variability between individuals and species associated with the type of cultivation and dietary habits and also with the age and weight at slaughter. Furthermore quality parameters have been defined in relation to susceptibility to autolysis, oxidation and hydrolysis of fats and disturbances caused by microorganisms that cause decisive changes in the physicochemical, microbiological and sensory characteristics. This review compiles current information regarding the nutritional composition of catfish meat and the quality parameters.

Key words. Proximate composition, shelf life, fatty acids, proteins, minerals and vitamins.

Resumen. Una de las carnes de pescado de mayor consumo en el mundo es la de Silúridos, también denominados peces de cuero o bagres, cuya principal característica es la ausencia de espinas intramusculares y de escamas, además de su alta productividad. En los últimos años se ha logrado realizar la caracterización nutricional de la carne de algunas de estas especies, hallándose que aunque la composición proximal se encuentra dentro de los rangos generales para peces, el contenido de grasa ofrece menor proporción de ácidos grasos poliinsaturados (AGP) particularmente en lo referente a la serie omega 3 (w-3), aunque la relación w-6/w-3 se encuentra dentro de lo establecido por la Organización Mundial de la Salud (OMS) para muchas de estas especies de bagre. De igual forma, el contenido de los ácidos eicosapentaenoico (EPA) y docosahexaenoico (DHA), así como el de aminoácidos, minerales y vitaminas, revelan una alta variabilidad individual y entre especies, asociada con el tipo de cultivo y los hábitos alimenticios, así como también con la edad y peso al momento del sacrificio. Asimismo, se han definido algunos parámetros de calidad relacionados con la susceptibilidad a la autolisis, oxidación e hidrólisis de las grasas y con las alteraciones causadas por microorganismos que generan cambios determinantes en las características fisicoquímicas, microbiológicas y sensoriales. Esta revisión recopila la información actual relacionada sobre la composición nutricional de la carne de bagre y los parámetros de calidad.

Palabras clave. Composición proximal, vida útil, ácidos grasos, proteínas, minerales y vitaminas.


Population growth, combined with increasing urbanization and per capita income, has caused an increase in demand for products with higher nutritional values (Diouf, 2009), so fish meat has become a forerunner as a component of a healthy diet, as it is considered a source of high quality food (Molina et al., 2000; Castro, 2002; Suárez et al., 2002; Santaella et al., 2007; Abeywardena and Patten, 2011 and Dyck et al., 2011). Fish meat is basically composed of water (66-81%), protein (16-21%), carbohydrates (<0.5%), lipids (0.2-25%) and ash (1.2 to 1.5%) (FAO, 1999); and is considered to have important biological value (Molina et al., 2000 and Santaella et al., 2007), due to the contribution of essential amino acids (Hatae et al., 1990) and micronutrients (Luten et al., 2008 and McManus and Newton, 2011), as well as, its high levels of fatty acids omega-3 and omega-6, higher than in most meat sold for human consumption (Gjedrem et al., 2012).

One of the orders of fish species most consumed in the world is Silurid, also called "leather fish" or catfish, with about 2200 species distributed in 38 families; the most representative commercially are Ictaluridae, Clariidade, Pangasiidae, Pimelodidae and Siluridae (IABIN, 2009), which contribute to a growing market and an entrenched industry, as is the case with the U.S. channel catfish Ictalurus punctatus, the South Asian Pangasius pangasius, the African Clarias gariepinus, the European Silurus glanis, and the South American, specifically Brazil, Rhamdia quelen and Pseduoplatystoma corruscans. Among the main characteristics that have enabled the development of this vital industry are an excellent feed conversion, a short production cycle and a tolerance to high cultivation densities (Waldrop and Wilson, 1996). In the period between 1990 and 2004, the volume of global meat production of catfish in aquaculture increased by over 300%, with an estimated production in 2005 of 1.512.846 t, mainly based on the cultivation of Ictalurus punctatus and two species of Pangasius (P. bocourti and P. sutshii) (FAO, 2011), while for the year 2011, 1.3 million t of Pangasius spp were produced just in Vietnam, which were directly assigned to the international markets (FAO, 2012). Hybrid production with the Ictaluridae family is also notable, which has been favored by its better growth rates, lower production cycle, tolerance to disease and stress, carcass yield and ease of fishing (Chomnawang et al., 2007). The present review deals with generalities involving the meat quality of catfish, emphasizing the nutritional content of the principal commercial species and their decay processes.

Nutritional composition of catfish meat. The nutritional value and physical properties of fish meat can vary considerably between species and between individuals of the same species. Also, the contents of protein and lipids, and the size of muscle fibers, are closely related to the origin (fishing or farming), age, body weight, type of feeding, migratory behavior and reproductive status (Suárez et al., 2002; Solari, 2006 and González et al., 2009); it is widely known that reproductive activity causes stored energy expenditure in the form of lipids or proteins, depending on environmental conditions.

Regarding the nutritional characterization of catfish muscle (Table 1), these species show a proximal composition within the ranges observed in the flesh of other fish species and is very similar to red meat, except for fat content which is considerably varied (Gjedrem et al., 2012). According to Memon et al. (2011), there is an inverse relationship between the moisture content and the fat content in the flesh of many fish species, which is reflected in the color of the fibers, which become whiter as the lipid content decreases, therefore, it is expected that light-colored catfish meat corresponds to leanness.

Lipid content and fatty acid composition. According to lipid content, fish meat can be classified as: lean (<2% fat), low fat (2-4%), medium fat (4-8%) and blue or fat (>8%). This classification involves not only individual characteristics of the nutritional quality of the meat, but also the visual aspect, yield during processing and taste (Castro, 2002). The proximate composition reported for several species of catfish (Table 2) reveals a high variability between species; for example, considered as lean are: Pseudoplatystoma fasciatum, Pseudoplatystoma corruscans, Pangasius gigas and Pangasianodon hypophthalmus; as low fat: Rhamdia quelen; and as medium fat: Clarias gariepinus and Ictalurus punctatus (Martino et al., 2002; Orban et al., 2008; Perea et al., 2008, Weber et al., 2008; Ersoy and Özeren, 2009, Li et al., 2009 and Chaijan et al., 2010). So far, there is no report of a catfish species classified as blue or fat, as with salmon (Oncorhynchus kisutch) and trout (Oncorhynchus mykiss) (Perea et al., 2008).

Table 3 shows the fatty acid profile for catfish and other commercial fish species, highlighting the relative equivalence of monounsaturated fatty acids (MUFA) and saturated fatty acids (SFA) in all species, but a content of polyunsaturated fatty acids (PUFA) to a lesser extent in terms of catfish. In this sense, the relationship between PUFA and SFA must be greater than 0.4 in accordance with the recommendations of the National Agency of Health of the United Kingdom (UK, 1994), so that some species of catfish presented disadvantages as indicated by Orban et al. (2008) and Domiszewski et al. (2011) for Pangasius hypophthalmus and Li et al. (2009) for Ictalurus punctatus.

The importance of long-chain polyunsaturated fatty acids lies in the protective effect on human health (Suárez et al., 2002), specially from the essential fatty acids linoleic and arachidonic, belonging to omega-6 (w-6), and the essential fatty acids a-linolenic, docosahexaenoic (DHA) and eicosapentaenoic acid (EPA) of omega-3 (w-3); the latter two having high nutritional value due to their anti-inflammatory and cytoprotective properties (Wanten and Calder, 2007). In this sense, catfish presented clear deficiencies when compared with other commercial species like Salmo salar and Oncorhynchus mykiss (Usydus et al., 2011). Contrary to reports on catfish, Izquierdo et al. (1999) indicated that trout has a proportion of w-3 27% greater than that of w-6 and, also, when subjected to cultivation processes these contents are unchanged. In farmed catfish, the contents of EPA and DHA decrease markedly from those presented under a natural environment (Kris-Etherton et al., 2002). However, it is clear that an appropriate feeding management increases the number of these contents; phytoplankton is the principal contributing source (Carrero et al., 2005 and Li et al., 2009).

In the ratio between omega-6 and omega-3 (w-6:w-3), the World Health Organization (WHO, 2005) suggests 5:1 for human diets (Teira et al., 2006), for the beneficial effects on health (Carrero et al., 2005 and Wood et al., 2003). In the studied species of catfish (Table 3), there is generally a high proportion of w-6 fatty acids and low values of w-3; however, for species like Rhamdia quelen, Clarias gariepinus, Pangasius hypophthalmus and Pseudoplatystoma corruscans the values of this ratio are within the range recommended by the WHO (Martino et al., 2002; Wing et al., 2003; Weber et al., 2008; Orban et al., 2008 and Domiszewski et al., 2011); although in Rhamdia quelen and Ictalurus punctatus the presence of EPA has not been detected (Weber et al., 2008 and Li et al., 2009); just as some studies report the presence of a-linolenic fatty acid (precursor of EPA and DHA), linoleic and arachidonic acid in significant amounts (Perea et al., 2008; Li et al., 2009; Chaijan et al., 2010 and Usydus et al., 2011), which presumably presents an advantage in terms of quality indices mainly due to the neutral effect of the atherogenic processes in linoleic acid (Perea et al., 2008).

Protein content. Fish meat is considered a protein of high biological value, not only because it has all the essential amino acids, but also because it presents digestibility rates superior to those of beef, eggs, and milk (Flores, 1987). The crude protein content in fish flesh varies between 17% and 21%, depending on the species, the nutritional and production cycle, as well as the body part (Chaijan et al., 2010). Research on muscle protein content in commercial catfish reported levels between 12% and 21%, depending on the origin (cultured or natural), reproductive cycle and type of feeding (Martino et al., 2002; Llanes et al., 2008; Orban et al., 2008; Weber et al., 2008; Ersoy and Ozeren, 2009; Chaijan et al., 2010 and Thammapat et al., 2010). The amino acids found in greater proportion in the flesh, in order, are: lysine, leucine, phenylalanine/tyrosine, arginine and threonine (Campos et al., 2006; Adeyeye, 2009; Szlinder et al., 2011 and Usydus et al., 2011).

Vitamins and minerals. Just as with the proteins and lipids, in fish tissues there is also a high variation, inter - and intra - species, in the vitamin and mineral content (Usydus et al., 2011). In Clarias gariepinus, Ersoy and Özeren (2009) reported that potassium is the mineral found in the highest proportion (1.817 ± 132.4 mg kg-1), followed by sodium (308 ± 0.35 mg kg-1), magnesium (184 ± 18.5 mg kg-1) and calcium (40.1 ± 0.08 mg kg-1); whereas in Pangasius hypophthalmus Orban et al. (2008) noted that sodium had the highest proportion (387.5 ± 135.9 mg kg-1) followed by potassium (335.6 ± 3.42 mg kg-1), while presenting low magnesium levels (12.08 ± 0.15 mg kg-1). This means that, contrary to what happens with other fish meat, for these two species, the Ca/P ratio could be affected, which is one of the indicators that confers the importance of the fish meat as a nutritional source (Izquierdo et al., 2001); however, in a study by Perea et al. (2008), which compared the content of Fe, P and Ca in six fish species marketed in Colombia, they observed that concentrations of these minerals in Pseudoplatystoma fasciatum are within optimal levels, even above those reported for Piaractus brachypomus, making this species of catfish an important source of P and Fe.

According to Greenfield and Southgate (2003), the vitamin content in the flesh of fish varies depending on the geographic availability, seasonality and physiological state. In a comparative study of traded species by Szlinder et al. (2011), they observed that Pangasius hypophthalmus has low levels of vitamins A (1.6 mg/100 g), D3 (0.31 mg/100 g) and E (0.20 mg/100 g) when compared to species such as Tilapia milotica, carp and salmon; while, Ersoy and Ozeren (2009) reported, for Clarias gariepinus, a content of vitamin A niacin and vitamin E of 18.1, 1.13 and 0.34 mg/100 g, respectively, and significant values of B1, B2 and B6 vitamins. However, the limited information on the quantification of vitamins in catfish meat limits the ability to define the true vitamin value.

Quality parameters. Muscle structure. In catfish, as in all teleost, the muscular package consists of segmental muscles (myomeres) arranged in adjacent bands that become more pronounced along the back, separated by layers of collagen (myocommata). Similarly, in these species, there are both red muscle and white muscle, the latter being the most abundant. The red muscle has a high content of hemoprotein compounds, such as myoglobin (Mb) (80%), and greater content of lipid (Omega-3, 6 and 9) and vitamins (A and B) (Veggetti et al., 1990), providing greater nutritional benefits; but in a marketing context, presents instability during storage or processing (Solari, 2006). Instead, the white muscle of catfish presents stable textural characteristics due to the larger size of the muscle fibers, making it very efficient in industrial processes.

Degradation processes of catfish meat. The shelf life of a food is the period of time in which, under certain controlled conditions, the product retains specific quality characteristics, including organoleptic or sensory, nutritional and hygienic-sanitary ones; all directly related to the level of food security (Pelayo, 2010). Among the variables that affect the life of fish meat, some have been identified that are related to the harvest and postharvest, such as microbiological water quality, type of sediment ponds, body size, temperature, hygiene during handling, slaughter and gutting methods, packaging, transport and storage, among others (Gallart et al., 2006; Orban et al., 2008; González et al., 2009 and Rodríguez et al., 2009), which affect the microbial ecology of live fish and therefore the final product. Similarly, freezing and thawing during storage result in the formation of ice crystals within the fibers, causing structural damage and ultra solute concentration in the meat which, in turn, leads to alterations in the cellular reactions and biochemical parameters influencing the physical quality of the meat (Leygonie et al., 2012).

Physico-chemical characteristics. In catfish meat, as in all meats, deterioration processes occur as soon as the fish dies. Deterioration processes include degradation of proteins and ATP, decreased pH, lipid oxidation and production of undesirable compounds such as trimethylamine (TMA-N) and volatile bases with low molecular weights (TVB-N), which are produced by bacterial action. Simultaneously, the muscle undergoes changes of texture and color (Li et al., 2011). These changes can be classified as biochemical, physical and microbiological, which determine the degree of acceptance by consumers and that, combined with nutritional assessment, determine the life of the meat (McMillin, 2008). Table 4 compiles the benchmarks of quality and life of meat during storage for some Silurid species.

Due to the lower glycogen content in the fish meat, the pH does not present a significant reduction in post mortem processes, being located close to neutrality, which leads to accelerated self hydrolysis and bacterial growth and, consequently, to degradation of the meat (Kubitza, 1999). In catfish, pH values have been reported ranging between 6 and 7 under different storage conditions (Molina et al., 2000; Lubes, 2005; Chomnawang et al., 2007; Rodríguez et al., 2009 and Pacheco et al., 2010). Fluctuations during this period do not provide significant variations in degradation processes, but must correlate with the biochemical, microbiological and sensory analyses. Llerena and Nue (2002) and Pacheco et al. (2010) indicate that in order that the pH be kept as low as possible, it is important to maintain low temperatures during the dressing process, which minimizes the biochemical reactions of degradation involving the release of inorganic phosphate and ammonia as a result of enzymatic degradation of ATP and the buffering capacity of the proteins contained in the fish muscles.

A high proportion of lipids in fish meat provides enhanced susceptibility to oxidative rancidity and hence the onset of degradation processes (Pacheco et al., 2010) that can be measured through quantification of the first stages of this reaction (peroxide value) or through the quantification of the thiobarbituric acid reaction (TBA) of by products such as aldehydes, ketones and other compounds with an unpleasant odor and flavor, which quantifies the presence of malondialdehyde (MDA mg kg-1). This parameter has been reported in catfish meat for some species such as Pseudoplatystoma sp, Brachyplatystoma rousseauxii and Bagre marinus, which achieve concentrations of 5, 1.98 and 3.2 MDA mg kg-1, respectively, under different conservation treatments and storage temperatures (Pacheco et al., 2000; Reyes and Arocha, 2000 and Rodríguez et al., 2009). According to Licciardello et al. (1979), fish meat that has a TBA number greater than 4 mg kg-1 is considered poor quality; but for smoked fish products, Kolodziesjska et al. (2002) determined that 3 to 4 MDA mg kg-1 is the minimum that affects chemical stability in the product.

In the formation of total volatile basic nitrogen (TVB-N), it is important to note that this variable is associated primarily with the activity of microorganisms and the pH variation during the post mortem stages and which, in freshwater fish species, mainly consists of the formation of ammonia, while in marine species it is the formation of ammonia and trimethylamine oxide (Pacheco et al., 2010). Thus, the TVB-N could be used as an effective indicator of deterioration of meat due to the high degree of relation with sensory analyses regarding product acceptance (Massa, 2006), with values between 30-40 mg/100 g being reported as the limits of acceptability for cold and temperate water fish (Benjakul et al., 2003).

In an investigation by Lubes (2005), it was revealed that Leiarius marmoratus meat, when subjected to different retention times before being stored at 0 °C, had TVB-N content values between 13.8 and 20.7 mg of N/100 g meat, without reaching the permitted maximum during the 21 days of the trial; while Chomnawang et al. (2007), reported that the hybrid Clarias macrocephalus × Clarias gariepinus reaches the permitted level of TVB-N after only 9 days when stored in polyethylene bags at 4 °C (Rodríguez et al., 2009).

Microbiological quality. Based on available information, it is expected that the biochemical composition of fish meat, as well as, variations in temperature and composition of the storage atmosphere favor microbial growth, considering the level of microbial contamination in the muscle from which fish will start to be significantly altered is 7.0 log CFU g-1 (ICMSF, 2005). The bacteria that commonly impact refrigerated fish correspond to different genera of Gram-negative bacillus such as Achromobacter spp., Pseudomonas spp., Falvobacterium spp., Shewanella spp., and Cytophaga spp. Similarly, Vibrio spp., Clostridium spp., Micrococcus spp., Alteromonas spp., Moraxella spp., enterobacteriaceae, coliform microorganisms, Basillus spp. and Listeria spp have been reported; as well as lactic acid bacteria, molds and yeasts (Mossel et al., 2002). Vermeiren et al. (2005) indicate the possibility of B. thermosphacta intervening in decomposition processes even with counts below 7.0 log CFU g-1 and therefore its presence, even in low numbers, should not be overlooked. Molina et al. (2000), Lubes (2005) and Noseda et al. (2012) conducted microbiological assessments on catfish meat under different processes of conservation, which involved the use of gaskets of low and high permeability and modified atmospheres, and found counts over 6 log CFU g-1 for total mesophilic aerobes and greater than 7 log CFU g-1 for total psychrophilic aerobes related to the termination of the product life and were correlated with the contents of TVB-N, TBA and pH.

Sensory issues in catfish meat. The high susceptibility to autolysis, oxidation and hydrolysis of fats and to alteration by microorganisms generate changes that affect the quality of the fish meat in terms of color, aroma, flavor and texture (Molina et al., 2001 and Wood et al., 2003). These sensory changes depend on the species and the method of storage and are measured based on previously designed scales. A general description is provided by the European Union in the guide for assessing the quality of fish. The suggested scale is 0 to 3, with 3 being the highest quality (Huidobro et al., 2011).

In possessing catfish meat with a relatively low fat content, it is expected that the lifetime will be greater when compared with other species such as salmon or trout. Reyes and Arocha (2000), Molina et al. (2001), Lubes (2005), Chomnawang et al. (2007), Rodríguez et al. (2009), Pacheco et al. (2010) and Noseda et al. (2012), indicate that the smell and taste of catfish meat decrease in value over time, due to the increase of metabolites and ammonia compounds from degradation, but that the implementation of meat management practices, such as washing with chlorine, salting or modified atmosphere or vacuum packaging, achieve increased product shelf life up to 84 days, when stored at freezing temperatures (0 to -16 °C), and up to 20 days at refrigeration temperatures (2-4 °C).



The authors thank the Directorate General for Research of the Universidad de los Llanos for the financial support provided for this review, which is part of the research project CAIALL-07/2011.



Abeywardena, M.Y. and G.S. Patten. 2011. Role of omega-3 longchain polyunsaturated fatty acid in reducing cardio-metabolic risk factors. Endocrine, Metabolic and Inmune Disorders Drug Targets 11(3): 232-246.         [ Links ]

Adeyeye, E.I. 2009. Amino acid composition of three species of Nigerian fish: Clarias anguillaris, Oreochromis niloticus and Cynoglossus senegalensis. Food Chemistry 113(1): 43-46.         [ Links ]

Benjakul, S., W. Visessanguan and J. Tueksuban. 2003. Changes in physico-chemical properties and gel-forming ability of lizardfish (Saurida tumbil) during post-mortem storage in ice. Food Chemistry 80(4): 535-544.         [ Links ]

Campos, P., R.C. Martino and L. Trugo. 2006. Amino acid composition of Brazilian surubim fish (Pseudoplatystoma coruscans) fed diets with different levels and sources of fat. Food Chemistry 96(1): 126-130.         [ Links ]

Carrero, J.J., E. Martín, L. Baró, J. Fonollá, J. Jiménez, J.J. Boza y E. López. 2005. Efectos cardiovasculares de los ácidos grasos omega-3 y alternativas para incrementar su ingesta. Nutrición Hospitalaria 20(1): 63-69.         [ Links ]

Castro, M.I. 2002. Ácidos grasos omega 3: Beneficios y fuentes. Interciencia 27(3): 128-136.         [ Links ]

Chaijan, M., A. Jongjareonrak, S. Phatcharat, S. Benjakul and S. Rawdkuen. 2010. Chemical compositions and characteristics of farm raised giant catfish (Pangasianodon gigas) muscle. LWT - Food Science and Technology 43(3): 452-457.         [ Links ]

Chomnawang, C., K. Nantachai, J. Yongsawatdigul, S. Thawornchinsombutand and S. Tungkawachara. 2007. Chemical and biochemical changes of hybrid catfish fillet stored at 4 °C and its gel properties. Food Chemistry 103(2): 420-427.         [ Links ]

Committee on Medical Aspects of Food Policy. (1994). Nutritional aspects of cardiovascular disease. pp. 28-29. In: H.M. Stationery Office (ed.). Report on Health and Social Subjects, No. 46. Department of Health HMSO, London. 202 p.         [ Links ]

Domiszewski, Z., G. Bienkiewicz and D. Plust. 2011. Effects of different heat treatments on lipid quality of striped catfish (Pangasius hypophthalmus). Acta Scientiarum Polonorum Technologia Alimentaria 10(3): 359-373.         [ Links ]

Diouf, J. 2009. How to feed the world in 2050. FAO's Director-General's Statements, 35 p.; accessed: July 2012.         [ Links ]

Dyck, M.C., D.W. Ma and K.A. Meckling. 2011. The anticancer effect of vitamin D and omega-3 PUFAs in combination via cod-liver oil: one plus may equal more than two. Medical Hypotheses 77(3): 326-332.         [ Links ]

Ersoy, B. and A. Özeren. 2009. The effect of cooking methods on mineral and vitamin contents of African catfish. Food Chemistry 115(2): 419-422.         [ Links ]

FAO. 1999. El pescado fresco: Su calidad y cambios de su calidad. Documento técnico de pesca 348. H.H. Huss (ed.). FAO, Roma. 220 p.         [ Links ]

FAO. 2011. Perspectiva general: Tendencias y cuestiones principales. In: Departamento de Pesca y Acuicultura. 6 p.; accessed: July 2012.         [ Links ]

FAO. 2012. El estado mundial de la pesca y la acuicultura, Roma. In: 231 p.; accessed: Octuber 2012.         [ Links ]

Flores, P. 1987. El pescado: Su importancia en la nutrición y la promoción de su consumo. FONAIAP Divulga 26 (Octubre-Diciembre). 14 p.         [ Links ]

Gallart, L., J. Barat, T. Rustad, U. Erikson, I. Escriche and P. Fito. 2006. Influence of brine concentration on Atlantic salmon fillet salting. Journal of Food Engineering 80(1): 267-275.         [ Links ]

Gjedrem, T., N. Robinson and M. Rye. 2012. The importance of selective breeding in aquaculture to meet future demands for animal protein: A review. Aquaculture 350(353):117-129.         [ Links ]

González, Á., A. Márquez, W. Senior y G. Martínez. 2009. Contenido de grasa y proteina en Pygocentrus cariba, Prochilodus mariae, Plagioscion squamosissimus, Piaractus brachypomus e Hypostomus plecostomus en una laguna de inundación del Orinoco medio. Revista Científica FCV - LUZ 19(1): 15-21.         [ Links ]

Greenfield, H. and D.A. Southgate. 2003. Food composition data: Production, management and use. Second edition. FAO, Rome. 289 p.         [ Links ]

Hatae, K., F. Yoshimatsu and J.J. Matsumoto. 1990. Role of muscle fibers in contributing firmness of cooked fish. Journal Food Science 55(3): 693-696.         [ Links ]

Huidobro, A., A. Pastor, M.E. López and M. Tejada. 2011. Washing effect on the quality index method (QIM) developed for raw gilthead seabream (Sparus aurata). European Food Research and Technology 212: 408-412.         [ Links ]

IABIN, 2009. Colecciones biológicas Mesoamericanas. En: Portal de Biodiversidad del Sistema de Información Ambiental Mesoamericano. ; consulta: octubre 2012.         [ Links ]

ICMSF. 2005. Micro-organisms in food 6: Microbiological ecology of food commodities. Second edition. Plenum Publishers, New York. 734 p.         [ Links ]

Izquierdo, P., G. Torres, E. González, Y. Barbosa and E. Márquez. 1999. Características fisicoquímicas de la carne de trucha (Oncorhynchus mykiss). Revista Científica FCV-LUZ 9(1): 27-32.         [ Links ]

Izquierdo, P., G. Torres, M. Allara, E. Márquez, Y. Barboza and E. Sánchez. 2001. Análisis proximal, contenido de aminoácidos esenciales y relación calcio/fósforo en algunas especies de pescado. Revista Científica FCV-LUZ 11(2): 95-100.         [ Links ]

Kolodziesjska, I., C. Niecikowska, E. Januszewska and Z.E. Sokorski. 2002. The microbial and sensory quality of mackerel hot smoked in mild conditions. LWT-Food Science and Technology 35(1): 87-92.         [ Links ]

Kris-Etherton, P.M., W.S. Harris and L.J. Appel. 2002. American heart association scientific statement, fish consumption, fish oil, omega 3 fatty acid, and cardiovascular disease. Circulation 106: 2747-2757.         [ Links ]

Kubitza, F. 1999. Calidad del pescado. Panorama da Aqüacultura SAGPyA Brasil. In:; accessed: July 2012.         [ Links ]

Leygonie, C., T.I. Britz and L.C. Hoffman. 2012. Impact of freezing and thawing on the quality of meat: Review. Meat Science 91(2): 93-98.         [ Links ]

Li, M.H., E.H. Robinson, C.S. Tucker, B.B. Manning and L. Khoo. 2009. Effects of dried algae Schizochytrium sp., a rich source of docosahexaenoic acid, on growth, fatty acid composition, and sensory quality of channel catfish Ictalurus punctatus. Aquaculture 292(3-4): 232-236.         [ Links ]

Li, X., J. Li, J. Zhu, Y. Wang, L. Fu and W. Xuan. 2011. Postmortem changes in yellow grouper (Epinephelus awoara) fillets stored under vacuum packaging at 0 °C. Food Chemistry 126(3): 896-901.         [ Links ]

Licciardello, J.R., E.M. Ravesi and M.G. Allsup. 1979. Quality aspects of comercial frozen minced fish blocks. Journal of Food Protection 42(1): 23-26.         [ Links ]

Lubes, C.A. 2005. Efecto del tiempo de retardo en la refrigeración sobre los cambios microbiológicos, físicos, químicos y sensoriales en el bagre yaque (Leiarius marmoratus). Trabajo de Grado. Facultad de Ciencias, Universidad Central de Venezuela, Caracas. 31 p.         [ Links ]

Luten, J., E. Schram and E. Elvevoll. 2008. Tailor-made functional seafood for consumers: dietary modulation of selenium and taurine in farmed fish. pp. 343-362. En: Lie, Ø. (ed.). Improved Farmed Fish Quality and Safety. Woodhead Publishing in Food Science, Technology and Nutrition, Cambridge. 628 p.         [ Links ]

Llanes, J., J. Toledo and J.D. Vega. 2008. Comportamiento del bagre africano (Clarias gariepinus) alimentado con dieta semi-húmeda, basada en ensilado biológico de pescado. Revista Cubana de Ciencia Agrícola 42(3): 269-263.         [ Links ]

Llerena, T. y G. Nue. 2002. Efecto de la temperatura de almacenamiento en refrigeración sobre el desarrollo del rigor mortis de la tilapia gris (Oreochromis niloticus). Anales Científicos UNALM 53: 479-488.         [ Links ]

Martino, R.C., J.E. Cyrino, L. Portz and L.C. Trugo. 2002. Performance and fatty acid composition of surubim (Pseudoplatystoma coruscans) fed diets with animal and plant lipids. Aquaculture 209(1-4): 233-246.         [ Links ]

Massa, A.E. 2006. Cambios bioquímicos post-mortem en músculo de diferentes especies pesqueras. Determinación de la vida útil de las mismas en frío. Tesis Doctorado en Ciencias. Facultad de Ciencias Exactas y Naturales. Universidad Nacional del Mar del Plata, Mar del Plata. 236 p.         [ Links ]

McManus, A. and W. Newton. 2011. Seafood, nutrition and human health. A synopsis of the nutritional benefits of consuming seafood. In: Centre of Excellence Science, Seafood and Health, 5 p.; accessed: July 2012.         [ Links ]

McMillin, K.W. 2008. Where is MAP going? A review and future potential of modified atmosphere packaging for meat. Meat Science 80(1): 43-63.         [ Links ]

Memon, N.N., F. Talpurf, M.I. Bhanger and Balouch. 2011. Changes in fatty acid composition in muscle of three farmed carp fish species (Labeo rohita, Cirrhinus mrigala, Catla catla) raised under the same conditions. Food Chemistry 126(2): 405-410.         [ Links ]

Molina, M.R., O.A. Garro and M.A. Judis. 2000. Composición y calidad microbiológica de la carne de Surubí. Comunicaciones Científicas y Tecnológicas. Universidad Nacional del Noroeste. Chaco, Argentina. 4 p.         [ Links ]

Molina, M.R., O.A. Garro y M.A. Judis. 2001. Calidad oxidativa y estabilidad oxidativa de Pseudoplatystoma curruscans. Ciencia y Tecnología de los Alimentos 3(2): 89-95.         [ Links ]

Mossel, D.A., B. Moreno and C.B. Struijk. 2003. Food Microbiology. Second edition. Ed. Acribia, Zaragoza. 375 p.         [ Links ]

Noseda, B., M.T. Islam, M. Eriksson, M. Heyndrickx, K. Reu, H.V. Langenhove and F. Devlieghere. 2012. Microbiological spoilage of vacuum and modified atmosphere packaged Vietnamese Pangasius hypophthalmus fillets. Food Microbiology 30(2): 408-419.         [ Links ]

OMS. 2005. Avoiding heart attacks and strokes. World Health Organization, Geneva, Switzerland. 32 p.         [ Links ]

Orban, E., T. Nevigato, G.D. Lena, M. Masci, I. Casini, L. Gambelli and R. Caproni. 2008. New trends in the seafood market. Sutchi catfish (Pangasius hypophthalmus) fillets from Vietnam: Nutritional quality and safety aspects. Food Chemistry 110(2): 383-389.         [ Links ]

Pacheco, R., M.E. Lugo and M.R. Robles. 2000. Postmortem biochemical and functional characteristic of monterey sardine muscle stored at 0 °C. Journal of Food Science 65(1): 40-47.         [ Links ]

Pacheco, J., A.L. Núñez y A. Espinoza. 2010. Estabilidad fisicoquímica durante el almacenamiento refrigerado de filetes de bagre dorado (Brachyplatystoma rousseauxii) ahumados y empacados con y sin vacío. Revista Científica UDO Agrícola 10(1): 123-132.         [ Links ]

Pelayo, M. 2010. Vida útil de un alimentos. En: Eroski consumer,; accessed: May 2012.         [ Links ]

Perea, A., E. Gómez, Y. Mayorga y C.Y. Triana. 2008. Caracterización nutricional de pescados de producción y consumo regional en Bucaramanga, Colombia. Archivos Latinoamericanos de Nutrición 58: 91-97.         [ Links ]

Reyes, G. y P. Arocha. 2000. Determinación del tiempo de vida útil de filetes de bagre cacumo (Bagre marinus) almacenado en hielo. Revista Saber 12(1,2): 48-53.         [ Links ]

Rodríguez, D., M. Barrero y M. Kodaira. 2009. Evaluación física y química de filetes de bagre (Pseudoplatystoma sp.) salados en salmuera empacados al vacío y almacenados en refrigeración. Archivos Latinoamericanos de Nutrición 59(2): 206-213.         [ Links ]

Santaella, M., G. Martínez y M.J. Periago. 2007. Comparación entre Ludubina (Dicentrarchus labrax) salvaje y cultivada: composición química y variación del contenido en ácidos grasos tras el cocinado. Anales de Veterinaria de Murcia 23: 105-119.         [ Links ]

Solari, F.A. 2006. Variaciones en la composición proteica del músculo de Colossoma macropomun (Cuvier, 1818) (Characiformes: Characidae), provenientes de criaderos durante su almacenamiento en frío. Trabajo de grado. Facultad de Ciencias Biológicas. Universidad Nacional Mayor de San Marcos. Lima. 64 p.         [ Links ]

Suárez, H., A. de Francisco, L.H. Beirão, J.M. Block, A. Saccol e S. Pardo. 2002. Importância de ácidos graxos poliinsaturados presentes em peixes de cultivo e de ambiente natural para a nutrição humana. Boletim do Instituto de Pesca 28(1):101-110.         [ Links ]

Szlinder, J., Z. Usydus, M. Malesa, L. Polak and W. Ruczynska. 2011. Marine and farmed fish on the Polish market: Comparison of the nutritive value and human exposure to PCDD/Fs and other contaminants. Chemosphere 85(11): 1725-1733.         [ Links ]

Teira, G., F. Perlo, P. Bonato and O. Tisocco. 2006. Calidad de carnes bovinas. Aspectos nutritivos y organolépticos relacionados con sistemas de alimentación y prácticas de elaboración. Ciencia, Docencia y Tecnología 33: 173-193.         [ Links ]

Thammapat, P., P. Raviyan, and S. Siriamornpun. 2010. Proximate and fatty acids composition of the muscles and viscera of Asian catfish (Pangasius bocourti). Food Chemistry 122(1): 223-227.         [ Links ]

Usydus, Z., J. Szlinder, M. Adamczyk and U. Szatkowska. 2011. Marine and farmed fish in the polish market: Comparison of the nutritional value. Food Chemistry 126(1):78-84.         [ Links ]

Veggetti, A., F. Mascarello, P.A. Scapolo and A. Rowlerson. 1990. Hyperplastic and hypertrophic growth of lateral muscle in Dicentrarchus labrax (L.). An ultrastructural and morphometric study. Anatomy and Embryology 182(1): 1-10.         [ Links ]

Vermeiren, L., F. Devlieghere, V. De Graef and J. Debevere. 2005. In vitro and in situ growth characteristics and behaviour of spoilage organisms associated with anaerobically stored cooked meat products. Journal of Applied Microbiology 98(1): 33-42.         [ Links ]

Wanten, G.L. and P.C. Calder. 2007. Immune modulation by parenteral lipid emulsions. American Journal of Clinical Nutrition 85(5): 1171-1184.         [ Links ]

Waldrop, J. and R. Wilson. 1996. Present status and perspectives of the culture of catfishes (Siluroidei) in North America. Aquatic Living Resources 9 (Supplement 1): 183-188.         [ Links ]

Weber, J., V.C. Bochi., C.P. Ribeiro, A. Victorio and T. Emanuelli. 2008. Effect of different cooking methods on the oxidation, proximate and fatty acid composition of silver catfish (Rhamdia quelen) fillets. Food Chemistry 106(1): 140-146.         [ Links ]

Wing, N., L. Phaik and B. Peng. 2003. Dietary lipid and palm oil source affects growth, fatty acid composition and muscle a-tocopherol concentration of African catfish, Clarias gariepinus. Aquaculture 215(1-4): 229-243.         [ Links ]

Wood, J., R. Richardson, G. Nute, A. Fischer, M. Campo, E. Kasapidou, P. Sheard and M. Enser. 2003. Effects of fatty acids on meat quality: a review. Meat Science 66: 21-32.         [ Links ]