SciELO - Scientific Electronic Library Online

 
vol.75 issue3Nitrogen and phosphorus as macronutrients of cocoa (Theobroma cacao) and their physiological functions in different planting patterns of cultivation in Central Java, IndonesiaDiagnostic methods of subclinical mastitis in bovine milk: an overview author indexsubject indexarticles search
Home Pagealphabetic serial listing  

Services on Demand

Journal

Article

Indicators

Related links

  • On index processCited by Google
  • Have no similar articlesSimilars in SciELO
  • On index processSimilars in Google

Share


Revista Facultad Nacional de Agronomía Medellín

Print version ISSN 0304-2847On-line version ISSN 2248-7026

Rev. Fac. Nac. Agron. Medellín vol.75 no.3 Medellín Sep./Dec. 2022  Epub Sep 30, 2022

https://doi.org/10.15446/rfnam.v75n3.100736 

Artículos

Does substrate influence germination of Cinchona pubescens Vahl. (Rubiaceae)?

¿Tiene influencia el sustrato sobre la germinación de Cinchona pubescens Vahl. (Rubiaceae)?

Franklin Hitler Fernandez-Zarate1  2 
http://orcid.org/0000-0002-8203-9026

Annick Estefany Huaccha-Castillo2 
http://orcid.org/0000-0002-9556-0080

Lenin Quiñones-Huatangari2 
http://orcid.org/0000-0002-0953-328X

Tito Sanchez-Santillan3 
http://orcid.org/0000-0002-3352-341X

1 Universidad Nacional Autónoma de Chota, Cajamarca, Perú. ffernandez@unach.edu.pe

2 Instituto de Ciencia de Datos, Universidad Nacional de Jaén, Cajamarca, Perú. annick.huaccha@unj.edu.pe , lenin.quinones@unj.edu.pe

3 Instituto de Investigaciones de la Amazonía Peruana, Iquitos, Perú. titosanchezsantillan@gmail.com


ABSTRACT

Cinchona pubescens is an emblematic species of Peru, as it was used as the only effective treatment against malaria for three centuries. This species is threatened by various anthropogenic activities and its propagation depends on the dispersal of seeds whose germination power is low, therefore, it is necessary to conserve and propagate it. The objective of the study was to evaluate the effect of substrate on the germination of C. pubescens. A completely randomized design was applied with five treatments according to the type of substrate T1 (25% forest soil+75% sand), T2 (50% forest soil+50% sand), T3 (75% forest soil+25% sand), T4 (100% forest soil) and T5 (100% sand), the forest soil was extracted from areas where C. pubescens is naturally present. Three replicates and 100 seeds per replicate were used in the treatments. Germination of C. pubescens started 12 days after sowing until day 42. T4 had a better effect on the index (14.23±0.41), time (24.18±0.69) and germination percentage (88.3±2.88%); followed by treatments T3 and T2. While T5 was the treatment with the least effect on C. pubescens germination. The study indicated that the type of substrate used significantly influences the germination of C. pubescens seeds, so it is suggested to use substrate from natural forest without combination to achieve high germination rates and propagation of this species.

Keywords: Cinchona tree; Sub-irrigation chamber; Sexual propagation

RESUMEN

Cinchona pubescens es una especie icónica de Perú ya que fue usada como único tratamiento efectivo contra la malaria por más de tres siglos. Esta especie está amenazada por diversas actividades antropogénicas y su propagación está supeditada a la dispersión de semillas cuyo poder de germinación es bajo, por ende, es necesario conservarla y propagarla. El objetivo del estudio fue evaluar el efecto del sustrato sobre la germinación de C. pubescens. Se aplicó un diseño completamente aleatorio con cinco tratamientos según el tipo de sustrato T1 (25% tierra de bosque+75% arena), T2 (50% tierra de bosque+50% arena), T3 (75% tierra de bosque+25% arena), T4 (100% Tierra de bosque) y T5 (100% arena), la tierra de bosque fue extraída de zonas donde C. pubescens está presente de forma natural. En los tratamientos se utilizaron tres réplicas y 100 semillas por cada réplica. La germinación de C. pubescens inició 12 días después de la siembra hasta el día 42. El T4 tuvo un mejor efecto sobre el índice (14,23±0,41), tiempo (24,18±0,69) y porcentaje de germinación (88,3±2,88%); seguido por los tratamientos T3 y T2. Mientras que el T5 fue el tratamiento con menor efecto sobre la germinación de C. pubescens. El estudio indicó que el tipo de sustrato empleado influye significativamente en la germinación de las semillas de C. pubescens, por lo que se sugiere emplear el sustrato procedente de bosque natural sin combinación para alcanzar índices altos de germinación y propagar esta especie.

Palabras clave: Árbol de la quina; Cámara de subirrigación; Propagación sexual

Cinchona is a genus of plants of high medicinal value, such as Cinchona officinalis, C. pubescens, C. calisaya, whose bark contains quinine, which was supplied as the only treatment against malaria for more than three centuries (Cóndor et al., 2009). The species of this genus were overexploited and their bark was traded in several countries. According to a conservative estimate, between the 17th and 18th centuries about 500,000 kg of bark was exported annually to Europe (Van Der Hoogte and Pieters, 2016).

The natural ecosystems of C. pubescens have suffered severe damage due to migratory agriculture, cattle ranching and logging (Arbizu et al., 2021; Huamán et al., 2019), making it difficult to find populations of this species in the forests of Peru (Buddenhagen et al., 2004), which has led to prioritizing the conservation and recovery of this species in Peru (Albán-Castillo et al., 2020). Agroforestry is an alternative for the recovery of native trees, one of the complex stages lies in the production of seedlings at the nursery level (Abanto-Rodriguez et al., 2016); especially in the seed germination phase, since it depends largely on quality factors such as type of medium, substrate, humidity, fertilization and botanical seed (Santos et al., 2010).

Cinchona pubescens is mainly propagated by seed, which is of great importance in the agroforestry management of the species (Vásquez et al., 2018). Under natural conditions, C. pubescens has a low germination and regeneration rate (Armijos-González and Pérez-Ruiz, 2016; Espinosa and Ríos, 2014), finding them only in remote sites and in small groups (Buddenhagen et al., 2004).

The substrate must allow good oxygenation, nutritional balance, and good water retention, in addition, it must provide a pH compatible with the species, adequate electrical conductivity, and be free of chemical elements at toxic levels (Abanto-Rodriguez et al., 2016). To meet the maximum of these required conditions, substrates must eventually be used in combination with each other or their natural form (Frade et al., 2011). Therefore, the objective of the study was to evaluate the effect of forest soil and sand on the germination of C. pubescens.

MATERIALS AND METHODS

Study area

The trial was conducted from November 5, 2020 to January 6, 2021 in the community of La Cascarilla (5°40'16.5"S and 78°53'11.6"W), province of Jaen in Peru, at 1810 masl. Annual precipitation is 1730 mm, minimum temperature of 13.0 °C and a maximum of 20.5 °C (Fernandez et al., 2021).

Collection and drying of biological material

Seeds of C. pubescens were collected in October 2020 from a single existing population at the locality of La Cascarilla (5° 4037.96S and 78° 5327.0W) at an altitude of 1760 m 1 kg of mature capsules (brown to brown color) were collected and packed in cloth bags for transfer to the nursery. The fruits were subjected to a drying process in a low light environment for 15 days, after dehiscence, seeds were selected in optimal phytosanitary conditions, with uniform size and purity; they were then stored in cloth bags at room temperature.

Trial set-up

A sub-irrigation chamber of 1 m long, 0.45 m wide, and 0.5 m high was divided into 15 experimental units of 0.15 m wide, 0.2 m long and 0.1 m high. In each replicate, the combined substrates were placed according to the standardized ratio (Table 1); then they were moistened to field capacity and 100 seeds of C. pubescens were sown per replicate, after which daily irrigation was applied (0.10 L m-2) to ensure that the moisture content remained constant throughout the trial process.

Table 1 Classification of treatments according to the type of substrate used in the germination of C. pubescens

Experimental design

The experiment was conducted under a completely randomized design with five treatments (Table 1) and three replicates per treatment; 100 seeds of C. pubescens per replicate and 1500 seeds were used throughout the trial.

Evaluation and data recording was carried out daily for 60 days, and the presence of the root apex was considered an indicator of germination.

The germination rate was determined according to the following equation:

Additionally, parameters related to seed germination were calculated according to González and Orozco (1996):

Germination Index (GI)

Average germination time (T).

Germination speed (M)

Where:

  • ni: number of seeds germinated each day i

  • ti: number of days after planting

  • t: time from sowing to emergence of the last seed

  • N: total seeds sown in the study

The assumptions of normality (Shapiro-Wilk) and homogeneity of variances (Levine test) were verified. Then, an analysis of variance (ANOVA) was performed for each response variable and mean values were compared using Tukey's HSD post hoc test (P<0.05). Data were processed in StatGraphics Centurion XVI software (StatPoint Technologies Inc, Warrenton, VA, USA).

RESULTS AND DISCUSSION

Seeds of C. pubescens germinated 12 days after sowing. Thereafter, germination increased daily, reaching the highest cumulative germination rate at 42 days (Figure 1). The cumulative germination curves show a quadratic polynomial trend, with a coefficient of determination close to 1 and with a certain degree of similarity in all treatments. The highest germination occurred between days 17 and 27 in all treatments and then its increase was minimal between days 28 and 37; completing the germination phase at 38 days (constant). However, the cumulative germination curve of T4 was always higher than that of the other treatments and T5 remained constant and below the mean.

Figure 1 Cumulative germination curves of C. pubescens seeds sown in different substrates.  

The germination process of C. pubescens seeds started on day 12 and concluded on day 42, when the highest cumulative germination rate was recorded; these results differ from those reported by Caraguay et al.(2016), who indicated that C. officinalis seeds began to germinate on day five and finished at 35 days; these differences may be related to genetic, physiological (phenol content) and morphological conditions of the seeds (Herrera et al., 2006; Armijos-González and Pérez-Ruiz, 2016), in addition to other factors such as humidity, soil, nutrients and agricultural management (Bonfil-Sanders et al., 2008; Meza et al., 2004).

According to the analysis of variance, the type of substrate has a significant effect (P<0.05) on the total number of germinated seeds of C. pubescens. Tukey's post hoc test showed that T4 had the highest germination rate of 88.3±2.88%, followed by T3 and T2 with 58.3±2.88% and 55±10%, respectively, while T5 had the lowest germination rate of 30±5%. There were significant differences (P<0.05) between T2, T3 (germination >50%) and T1 and T5 (germination <50%) (Figure 2).

Figure 2 Effect of substrate on C. pubescens seed germination at 60 days. Means with the same letters per treatment indicate no significant differences by Tukey HSD test (P<0.05). 

The highest germination rate (88.3%) of C. pubescens seeds was recorded at T4 (forest substrate), this result may be related to the high organic matter content (10.55%) and pH (4.82) of the substrate (García-Hoyos et al., 2011), in addition to the texture (sandy soil) which facilitates water retention and circulation, also provide the necessary nutrients during germination (Alfonso et al., 2017; Cunha et al., 2006). The type of substrate influences seed imbibition, due to a series of characteristics such as water potential (Wagner et al., 2006), which allows the activation of substances stored in the embryonic system and thus accelerates and increases their germination rate (García-Hoyos et al., 2011). The mean germination time of C. pubescens seeds was 24.18 to 26.22 days (T4 and T1, respectively). There were significant differences (P<0.05) in the speed and germination index of C. pubescens seeds. The highest germination index was recorded at T4, followed by T3 and T2. The germination speed in T4 was the highest and significant differences (P<0.05) were determined with the other treatments (Table 2). Table 3 shows the physicochemical characteristics of the substrates used in the germination of C. pubescens seeds; in the five treatments the texture was sandy loam.

Table 2 Germination results of C. pubescens seeds in different substrates.  

Table 3 Physicochemical properties of the substrates used in the germination of C. pubescens

Several studies have demonstrated the effect of substrate type on seed germination in species of the genus Cinchona, with some variation in results due to climatic, species, and pre-specified methodological factors. For example, Campos et al. (2016) on C. pubescens seeds with KNO3 at 1000 ppm achieved a germination rate of 91%, which is considered high compared to the rate found in this study (88.3%) and according to Conde et al. (2017), with 83.33% germination C. officinalis on peat substrates. Jäger (2014) showed that C. pubescens seeds have germination rates of 50 to 85%, which is the range that includes the results reported in this study. Rodríguez et al. (2020) reported 50% germination in sandy textured substrates, a value similar to T2 and T3 in this study. Jeréz (2017) found a germination rate of 70.67% for C. officinalis seeds treated with liquid mycorrhizae and in a substrate (20% black soil +60% pine bark +20% rice husk).

Higher germination rates and speed and shorter germination time were reported for C. pubescens seeds at T4, which favors sexual propagation of C. pubescens and avoids prolonged dormancy of seeds in the germinator that are often affected by pathogen invasion and consequently generate uneven seedling growth. There is no doubt that C. pubescens seeds require certain favorable conditions provided by the substrate, including organic matter content, water retention capacity, pH, and adequate amounts of macronutrients (Rodríguez et al., 2020).

CONCLUSIONS

It was found that the type of substrate used had a positive influence on the germination of C. pubescens seeds; in this sense, it is recommended to use forest soil extracted from areas where there are relicts of C. pubescens and avoid combining them with other substrates. Likewise, for the mass propagation of species of the genus Cinchona, it is not recommended to use pure sand as a substrate in the germination stage.

REFERENCES

Abanto-Rodriguez C, García-Soria D, Guerra-Árevalo W, Murga-Orrillo H, Saldaña-Ríos G, Vázquez-Reátegui D y Tadashi-Sakazaki R. 2016. Sustratos orgánicos en la producción de plantas de Calycophyllum spruceanum (Benth.). Scientia Agropecuaria 7(3): 341-347. https://doi.org/10.17268/sci.agropecu.2016.03.23Links ]

Albán-Castillo J, Chilquillo E, Melchor-Castro B, Arakaki M, León B y Suni M. 2020. Cinchona L. Árbol de la Quina: Repoblamiento y reforestación en el Perú. Revista Peruana de Biología 27(3): 423-426. https://doi.org/10.15381/rpb.v27i3.18697Links ]

Alfonso MV, Martinazzo EG, Aumonde TZ and Villela FA. 2017. Parãmetros fisiológicos de mudas de Albizia niopoides produzidas em diferentes composições de substrato. Ciência Florestal 27: 1395-1402. https://doi.org/10.5902/1980509830221Links ]

Arbizu CI, Ferro-Mauricio RD, Chávez-Galarza JC, Guerrero-Abad JC, Vásquez HV and Maicelo JL. 2021. The complete chloroplast genome of the national tree of Peru, quina (Cinchona officinalis L., Rubiaceae). Mitochondrial DNA Part B: Resources 6(9): 2781-2783. Scopus. [ Links ]

Armijos-González R and Pérez-Ruiz C. 2016. In vitro germination and shoot proliferation of the threatened species Cinchona officinalis L (Rubiaceae). Journal of Forestry Research 27(6): 1229-1236. https://doi.org/10.1007/s11676-016-0272-8Links ]

Bonfil-Sanders C, Cajero-Lázaro I y Evans RY. 2008. Germinación de semillas de seis especies de Bursera del centro de México. Agrociencia 42(7): 827-834. http://www.scielo.org.mx/scielo.php?script=sci_arttext&pid=S1405-31952008000700009&lng=es&tlng=esLinks ]

Buddenhagen ChE, Renteria JL, Gardener M, Wilkinson SR, Soria M, Yánez P, Tye A and Valle R. 2004. The control of a highly invasive tree Cinchona pubescens in Galapagos1. Weed Technology 18: 1194-1202. https://doi.org/10.1614/0890-037X(2004)018[1194:TCOAHI]2.0.CO;2Links ]

Campos J, Campos S, Cerna L y Chico J. 2016. Germinación de semillas de quina, Cinchona pubescens Vahl. con ácido giberélico, nitrato de postasio y agua de coco. Revista Científica Pakamuros 4(1): 13-13. https://doi.org/10.37787/pakamuros-unj.v4i1.38Links ]

Caraguay KA, Eras VH, Gonzalez D, Moreno J, Minchala J, Yaguana M y Valarezo C. 2016. Potencial reproductivo y análisis de calidad de semillas de Cinchona officinalis L., provenientes de relictos boscosos en la provincia de Loja - Ecuador. Revista Investigaciones Altoandinas 18(3): 271-280. https://www.doi.org/10.18271/ria.2016.216Links ]

Conde ME, Moreno JA, Eras VH, Minchala J, González D, Yaguana M y Valarezo C. 2017. Multiplicación sexual y asexual de Cinchona officinalis L., con fines de conservación de la especie. Revista Científica Institucional TZHOECOEN 9(1): 81-93. https://doi.org/10.26495/rtzh179.121509Links ]

Cóndor E, de Oliveira BH, Loayza Ochoa K y Reyna Pinedo V. 2009. Estudio químico de los tallos de Cinchona pubescens Vahl. Revista de la Sociedad Química del Perú 75(1): 54-63. http://www.scielo.org.pe/scielo.php?script=sci_arttext&pid=S1810-634X2009000100008&lng=es&tlng=esLinks ]

Cunha A de M, Cunha G de M, Sarmento R de A, Cunha G de M and Amaral JFT. 2006. Efeito de diferentes substratos sobre o desenvolvimento de mudas de Acacia sp. Revista Árvore, 30(2): 207-214. https://doi.org/10.1590/S0100-67622006000200007Links ]

Espinosa CI y Ríos G. 2014. Patrones de crecimiento de Cinchona officinalis in vitro y ex vitro; respuestas de plántulas micropropagadas y de semillas. Revista Ecuatoriana de Medicina y Ciencias Biológicas 35(1-2): 73-82. https://doi.org/10.26807/remcb.v35i1-2.250Links ]

Fernandez FH, Huaccha AE, Quiñones L y Sánchez T. 2021. Influencia del tamaño de plántula de Cinchona officinalis (Rubiaceae) en la supervivencia y deformación del tallo posterior al repique. Revista Cubana de Ciencias Forestales 9(3): 412-422. http://cfores.upr.edu.cu/index.php/podium/article/view/713Links ]

Frade EF, Araújo JA, Silva SB, Moreira JGV and Souza LP. 2011. Substratos de resíduos orgânicos para produção de mudas de Ingazeiro (Inga edulis Mart) no vale do Juruá-Acre. Enciclopedia Biosfera 7(13): 959-969. https://conhecer.org.br/ojs/index.php/biosfera/article/view/4183Links ]

García-Hoyos A, Sánchez-Robles J, García-Hernández LA y León-González F. 2011. Reproducción sexual e influencia de sustratos en el desarrollo de Malpighia glabra L. (Malpighiaceae). Polibotánica 32:119-133. http://www.scielo.org.mx/scielo.php?script=sci_arttext&pid=S1405-27682011000200007&lng=es&tlng=es. [ Links ]

González L y Orozco A. 1996. Métodos de análisis de datos en la germinación de semillas, un ejemplo: Manfreda brachystachya. Botanical Sciences 58: 15-30. https://doi.org/10.17129/botsci.1484Links ]

Herrera J, Alizaga R, Guevara E y Jiménez V. 2006. Germinación y crecimiento de la planta. Primera edición. Editorial Universidad de Costa Rica. 124 p. http://editorial.ucr.ac.cr/agronomia/item/1925-germinacion-y-crecimiento-de-la-planta.htmlLinks ]

Huamán L, Albán J y Chilquillo E. 2019. Aspectos taxonómicos y avances en el conocimiento del estado actual del árbol de la Quina (Cinchona officinalis L.) en el Norte de Perú. Ecología Aplicada 18(2): 145-153. https://www.doi.org/10.21704/rea.v18i2.1333Links ]

Jäger H. 2014. Cinchona pubescens. En Enzyklopädie der Holzgewächse: Handbuch und Atlas der Dendrologie (pp. 1-14). John Wiley & Sons, Ltd. https://doi.org/10.1002/9783527678518Links ]

Jeréz EA. 2017. Propagación sexual y asexual de la cascarilla (Cinchona officinalis L.), con fines de potencial reproductivo en el vivero Catiglata del Consejo provincial de Tungurahua (Tesis de grado). Escuela Superior Politécnica de Chimborazo. Riobamba. Ecuador. 84 p. [ Links ]

Meza N, Pereira A y Bautista D. 2004. Efecto de la salinidad en la germinación y emergencia de semillas de níspero (Manilkara achras Miller Fosberg). Revista de la Facultad de Agronomía De La Universidad Del Zulia 21(1): 60-66. https://produccioncientificaluz.org/index.php/agronomia/article/view/26520Links ]

Rodríguez RR, Barrutia I and Marín TD. 2020. Germination of Cinchona officinalis L. seeds in three soils types of Cajamarca, Peru. Revista Cubana de Ciencias Forestales 8(1): 75-87. http://scielo.sld.cu/scielo.php?script=sci_arttext&pid=S2310-34692020000100075&lng=pt&nrm=iso&tlng=enLinks ]

Santos FCB, Oliveira TK, Lessa LS, Oliveira TC and Luz SA. 2010. Produção de mudas de cupuaçuzeiro em diferentes substratos e tubetes. Magistra, Cruz das Almas - BA 22(3,4): 185-190. https://www.embrapa.br/busca-de-publicacoes/-/publicacao/879707/producao-de-mudas-de-cupuacuzeiro-em-diferentes-substratos-e-tubetesLinks ]

Van Der Hoogte AR and Pieters T. 2016. Quinine, Malaria, and the Cinchona Bureau: Marketing practices and knowledge circulation in a dutch transoceanic Cinchona-Quinine Enterprise (1920s-30s). Journal of the History of Medicine and Allied Sciences 71(2): 197-225. https://doi.org/10.1093/jhmas/jrv009Links ]

Vásquez JH, Lápiz E, Barboza MKY, Vásquez SN and Quispe LM. 2018. Comparación de sustratos en la propagación sexual y asexual del árbol de la quina (Cinchona officinalis). Revista de Investigación de Agroproducción Sustentable 2(3): 77-85. http://dx.doi.org/10.25127/aps.20183.407Links ]

Wagner AW, Santos CEM, Silva JOC, Alexandre RS, Negreiros JRS, Pimentel LD, Álvares VS and Bruckner CH. 2006. Influencia do pH da água de embebição das sementes e do substrato na germinação e desenvolvimento inicial do Maracujazeiro doce. Current Agricultural Science and Technology 12(2): 2. https://periodicos.ufpel.edu.br/ojs2/index.php/CAST/article/view/4540Links ]

Received: June 21, 2022; Accepted: August 03, 2022

Creative Commons License This is an open-access article distributed under the terms of the Creative Commons Attribution License