INTRODUCCIÓN
Los bosques de montaña de la zona andina colombiana cercanos a los grandes centros poblados se encuentran altamente transformados. La principal causa es la deforestación, que en Colombia se debe al crecimiento de los asentamientos urbanos, la expansión de actividades agrícolas y pecuarias, los cultivos ilícitos, la minería y los incendios forestales (Armenteras et al. 2013). Precisamente los bosques andinos son un área de especial interés para la conservación de la biodiversidad, dada su alta riqueza biológica y el alto grado de endemismo que presentan (Myers et al. 2000, Olson & Dinerstein 2002, Young et al. 2002).
Los Cerros Orientales de Bogotá se ubican en la cordillera Oriental colombiana, son una franja montañosa de cerca de 14000 hectáreas que se localizan entre el altiplano y los llanos orientales, haciendo de ellos una barrera natural al oriente de la capital del país, la ciudad más grande y poblada de Colombia. Albergan gran diversidad de fauna y flora, forman parte de un importante corredor de la biodiversidad dentro de la cordillera Oriental y ofrecen servicios ambientales a la ciudad como agua, regulación del clima local y mejoramiento de la calidad del aire (van der Hammen 1998). Sin embrago, han ocurrido importantes procesos de degradación desde el periodo de la colonia (CIFA 1999). En el año 1976 fueron delimitados y declarados como reserva forestal protectora y a pesar de la categoría de protección, presentan aún varias problemáticas, entre las que se encuentran la urbanización ilegal, la minería de materiales de construcción (CIFA 1999) y las invasiones biológicas (Ríos 2005). Por estas razones, los cerros orientales requieren medidas de conservación y restauración (van der Hammen 1998).
Para desarrollar estrategias de restauración o rehabilitación de ecosistemas la evaluación de la vegetación es fundamental y hace parte de los pasos requeridos en un proyecto de restauración ecológica (Vargas 2007). Esta evaluación debe considerar la historia de disturbio, características abióticas de la zona y del paisaje, y la distribución de las especies dentro de cada uno de los tipos de vegetación identificados (Mora et al. 2007). Groenendijk & Cleef (2005) por ejemplo, describieron los patrones de la vegetación en un enclave semi-seco del altiplano de Bogotá, considerando variables ambientales e historia de disturbio, para describir rutas sucesionales como base para orientar la restauración del bosque seco andino e identificar especies claves dentro de cada estado sucesional (Groenendijk et al. 2005a). La caracterización de la vegetación es útil para incrementar las probabilidades de éxito de un proyecto de restauración ecológica, establecer potenciales limitantes y barreras para que la sucesión continúe su curso.
El objetivo de este trabajo fue describir la composición y estructura de la vegetación en un área bajo acciones de restauración ecológica, evaluar los alcances de las actividades adelantadas hasta el momento, e identificar necesidades y prioridades para fortalecer y optimizar los procesos de restauración que se desarrollan en la zona.
MATERIALES Y MÉTODOS
Área de estudio
El estudio se realizó en la Reserva Forestal Protectora Bosque Oriental de Bogotá, en el sector II del Parque Nacional Enrique Olaya Herrera. La zona de trabajo corresponde en su totalidad al área piloto de restauración ecológica establecida por el Jardín Botánico de Bogotá José Celestino Mutis (JBB) que se encuentra desde 1998 bajo acciones de restauración ecológica. El área piloto tiene 57 ha y la altitud oscila entre 2700 y 2800 m (Fig. 1). La precipitación anual media es de 1134 mm, se presentan dos picos de precipitación entre abril y mayo y entre octubre y noviembre; la temperatura promedio es de 12,6 °C (Gracia & Mayorga 2009).
El bosque en el área de estudio ha sido transformado por el crecimiento urbano y las intervenciones históricas sobre los cerros, asociadas con la explotación de madera y materiales de construcción desde el periodo colonial, que dejaron los cerros prácticamente sin cobertura vegetal alguna, así como con la plantación intensiva de especies forestales exóticas como estrategia de reforestación (CIFA 1999), el establecimiento de asentamientos de pequeña extensión y la llegada de especies invasoras agresivas (Ríos 2005). Actualmente la zona contiene coberturas como plantaciones forestales de Pinus spp., Acacia spp. y Eucalyptus globulus Labill., matorrales dominados por la especie invasora Ulex europaeus L. y algunos reductos de vegetación nativa secundaria.
Las actividades de restauración en la zona se concentran en la remoción no mecanizada de matorrales de U. europaeus y Genista monspesulanna (L.) L. A. S. Johnson; la poda y el control de la regeneración de las especies forestales exóticas por medio de la remoción de plántulas e individuos jóvenes, y la introducción de especies en su mayoría nativas, en diferentes arreglos florísticos. Se ha incluido el mantenimiento esporádico de las zonas intervenidas para eliminar parches de regeneración de las especies invasoras, agotar los bancos de semillas de éstas y enriquecer las zonas con más especies o individuos.
Método de muestreo
Las coberturas del área se clasificaron en plantaciones forestales exóticas (en adelante PEX), matorrales abiertos (MAB), matorrales densos (MDE), y pastizales abandonados (PMI). Mediante el análisis de imágenes y recorridos exhaustivos se identificaron todos los segmentos de cada una de las coberturas del área piloto. Dependiendo de la extensión de los fragmentos, se establecieron entre de tres y siete transectos de 0,10 ha (50 x 2 m) separados por distancias de por lo menos 20 m utilizando la metodología propuesta por Gentry (1995). Se contaron todos los individuos leñosos con altura superior a 0,3 m con el fin de identificar los individuos presentes en el estrato de regeneración y tener una mejor representación del sotobosque. A todos los individuos se les midió la altura, y la circunferencia a la altura del pecho (CAP) a 1,3 m desde la superficie del suelo, o la circunferencia al cuello de la raíz (CCR) en los individuos de menor talla; en el caso de individuos con tallos múltiples se midieron separadamente. Los individuos ubicados en los límites del transecto solo se contaron si más de la mitad de su tronco se encontraba dentro del transecto.
La identificación taxonómica de las muestras se hizo con la colaboración de especialistas del herbario del JBB y la comparación con ejemplares de referencia, los nombres fueron verificados utilizando las plataformas electrónicas: The Plant List (http://www.theplantlist.org/) y Tropicos (http://tropicos.org/). Las muestras botánicas recolectadas se depositaron en el herbario JBB del Jardín Botánico de Bogotá.
Análisis de datos
Cada valor de CAP se transformó a DAP y luego a área basal mediante la ecuación AB = ∏/4(DAP)2 (Franco-Roselli et al. 1997). Se calculó el índice de valor de importancia para las especies (IVI), sumando los parámetros estructurales de densidad (DeR), frecuencia (FR) y la dominancia (DoR) relativas (Finol 1976). Para evaluar la importancia ecológica de las familias en cada tipo de cobertura, se calculó el índice de valor de importancia para familias (VIF), según lo propuesto por Mori & Boom (1983).
Para evaluar la distribución de los individuos por tamaños se construyeron intervalos de clase a partir del DAP mediante la ecuación C = (Xmáx.- Xmin.)/m, donde C = amplitud del intervalo; m = 1+3,3 log N; N = No. de individuos (Rangel-Ch. & Velásquez 1997). La estructura vertical de la vegetación fue evaluada de acuerdo con los estratos propuestos por Rangel y Lozano (1986): Rasante <0,3m; herbáceo 0,31-1,5 m; arbustivo 1,51-5 m; subarbóreo o de arbolitos 5,1-12 m; arbóreo inferior 12,1-25 m; arbóreo superior >25 m.
Para comparar la similitud florística cualitativa entre las coberturas establecidas se calculó el coeficiente de similitud de Sorensen, basado en la presencia/ausencia de especies utilizando el programa PAST 2.04 (Hammer et al. 2001), también se calculó el índice de similitud de Morisita empleando los valores IVI de cada especie en cada cobertura.
RESULTADOS
En total se establecieron 95 transectos en los que se registraron 7604 individuos clasificados en 106 especies, pertenecientes a 79 géneros y 46 familias. Las familias con mayor riqueza de especies fueron Compositae (13 especies), Solanaceae (13 especies) y Leguminosae (ocho especies). La cobertura dominante en extensión en el área piloto es PEX. El 51% de los individuos registrados corresponde a especies nativas. La cobertura con mayor riqueza fue MDE con 86 especies, de las cuales 71 son nativas (83%) y 15 no nativas (17%). Le sigue PEX, con 77 especies, de las cuales 64 especies (83%) son nativas y 13 no nativas (17%). La cobertura PMI presentó 64 especies, 51 nativas (80%) y 13 no nativas (20%). La cobertura con menor riqueza de especies fue MAB, con 42 especies, de las cuales 32 son nativas (76%) y 10 son no nativas (24%). Se registraron como introducidas en el proceso de restauración 15 especies en MAB, en MDE 58 especies, en PEX 44 especies y en PMI 40 especies.
Las especies nativas más abundantes en toda el área fueron Miconia squamulosa Triana (468 individuos), Solanum oblongifolium Dunal (402 individuos), Varronia cylindrostachya Ruiz & Pav. (392 individuos), Piper bogotense C. DC. (386 individuos) y Baccharis latifolia (Ruiz & Pav.) Pers. (246 individuos). Las especies no nativas más abundantes en toda el área fueron Fuchsia boliviana Carrière (761 individuos), U. europaeus (653 individuos), Acacia decurrens Willd. (642 individuos), Acacia melanoxylon R. Br. (489 individuos) y G. monspessulana (465 individuos). El listado de las especies encontradas en el estudio se presenta en el Anexo 1.
El análisis de la estructura vertical mostró que la mayor proporción de los individuos (85%), pertenecientes a 107 especies, se encuentra en los estratos herbáceo y arbustivo; 89 de estas especies son nativas (Fig. 2a). En estos estratos las especies nativas más abundantes fueron M. squamulosa, S. oblongifolium, P. bogotense, V. cylindrostachya y B. latifolia. En el estrato de arbolitos fueron abundantes las especies nativas V. cylindrostachya y Verbesina crassiramea S. F. Blake y las especies no nativas A. decurrens y A. melanoxylon. Solo los individuos de las especies E. globulus, A. melanoxylon y Pinus patula Schiede ex Schltdl. & Cham. y un individuo de Quercus humboldtii Bonpl. se encontraron en el estrato arbóreo superior. La distribución de individuos por clases diamétricas mostró una curva en forma de J invertida (Fig. 2b) con la mayor proporción de los individuos (92%) perteneciente a la menor clase diamétrica, con valores de DAP ≤ 12 cm (Figura 2b). En esta clase diamétrica las especies más abundantes fueron F. boliviana, U. europaeus, A. decurrens, G. monspessulana y M. squamulosa. En las clases diamétricas superiores (> 92 cm) solo se vieron representados individuos de las especies E. globulus y Cupressus lusitanica Mill.

Figura 2 Distribución de individuos de acuerdo con los estratos a. y clases diamétricas b. para la vegetación registrada en cada una de las coberturas del área Parque Nacional Enrique Olaya Herrera.
La mayoría de las especies en las cuatro coberturas presentaron IVI bajos. Resalta que en PEX las especies forestales exóticas acumulan más del 34% del IVI (Tabla 1). Se destaca que U. europaeus es importante en áreas de matorrales densos y bajo plantaciones forestales, con valores altos de densidad relativa. E. globulus, con individuos de gran porte, presentó valores altos de dominancia relativa en todas las coberturas, aunque bajos valores de densidad y frecuencia. Las especies de Acacia presentan alta densidad relativa y dominancia relativa en las coberturas PEX donde son los elementos arbóreos más abundantes. De acuerdo con los IVI, las especies nativas M. squamulosa, B. latifolia, P. bogotense y V. cylindrostachya tienen alta importancia ecológica.
Tabla 1 Listado de las 10 especies con mayor IVI en cada una de las coberturas evaluadas.
MAB: Matorral abierto, MDE: Matorral denso, PEX: Plantación forestal, PMI: Pastizal misceláneo. DeR: Densidad relativa, FR: Frecuencia relativa, DoR: Dominancia relativa.
Las cinco familias con mayor importancia ecológica en las cuatro coberturas son Myrtaceae (cuatro especies, 180 individuos), Leguminosae (ocho especies, 2310 individuos) y Compositae (13 especies, 617 individuos) (Tabla 2). En PEX las familias de mayor importancia contienen las especies forestales A. melanoxylon, A. decurrens, E. globulus y P. patula.
Tabla 2 Listado de las cinco familias con mayor IVF en cada una de las coberturas.

MAB: Matorral abierto, MDE: Matorral denso, PEX: Plantación forestal, PMI: Pastizal misceláneo. RiR: Riqueza relativa, DeR: Densidad relativa, DoR: Dominancia relativa.
Los mayores valores de similitud se registraron entre MDE y PMI: S0rensen 0,76; Morisita 0,73, así como PEX y MDE: S0rensen 0,79. La menor similitud se encontró para PEX y PMI con el índice de Morisita: 0,56 y entre MDE y MAB con S0rensen: 0,58 (Fig. 3).
DISCUSIÓN
La riqueza de especies registrada podría relacionarse con las diferentes coberturas y tipos de vegetación sucesional presentes, así como con la larga y heterogénea historia de alteración (Cortés et al. 1999, Cantillo & Gracia 2013), de manera que se encuentran especies nativas, exóticas invasoras y cultivadas (ornamentales y agroalimentarias). Por su parte, las familias con mayor riqueza de especies corresponden a las encontradas en las etapas iniciales de la regeneración de bosques secundarios (Cavelier & Santos 1999, Araújo et al. 2006).
La inclusión de individuos con altura igual o superior a 0,3 m y bajo DAP es importante para evidenciar procesos de regeneración en áreas alteradas y en proceso de restauración en los que los estratos inferiores tienen gran importancia. Otros autores han señalado también la importancia de considerar individuos con DAP inferior a 2,5 cm para describir con más precisión la composición y estructura del sotobosque de los bosques andinos (Galindo-T et al. 2003, Dueñas-C. et al. 2007) o identificar bosques secundarios jóvenes (Yepes et al. 2010). En este estudio resalta que en las clases diamétricas inferiores se encuentra una alta proporción de individuos de invasoras como U. europaeus, G. monspessulana, A. melanoxylon y A. decurrens, lo que indica la necesidad de continuar con actividades de control de estas especies, ya que sus bancos de semillas son abundantes y tienen alta capacidad de rebrotar. Por ejemplo, en plantaciones de A. decurrens el banco de semillas es dominado por esta especie (Groenendijk et al. 2005b), y en matorrales de U. europaeus la densidad del banco de sus semillas y su expresión es elevada después de un disturbio, incluido el fuego (Díaz & Vargas 2009).
Las especies forestales exóticas introducidas en los cerros orientales predominan en la vegetación del área de estudio. A pesar de que algunos estudios han identificado que estas plantaciones, principalmente de eucaliptos y pinos, se caracterizan por presentar sotobosques con escasa vegetación (Cavelier & Tobler 1998, Cortés et al. 1999, Cavelier & Santos 1999, Van Wesenbeeck et al. 2003) debido a sus efectos negativos sobre el establecimiento de otras especies (Lima 1996, Richardson & Rundel 1998) y la fertilidad de los suelos (Cortés et al. 1990), en el área de estudio se encontró una riqueza considerable de especies en el sotobosque de coberturas PEX, que se puede relacionar con la presencia de pequeños claros naturales o conformados a través de la estrategia de manejo descrita, en los que se dinamiza la expresión de bancos de semillas y la colonización de especies, o con la introducción de especies nativas como parte del proceso de restauración.
Esta condición indica que con actividades de aclareo moderado y nucleación (sensu Reis et al. 2003) se pueden establecer parches de bosque nativo secundario, asistidos por la matriz de las PEX presentes. Estas pueden actuar como mediadoras del proceso de regeneración de coberturas nativas, debido a su capacidad de amortiguación de cambios en la humedad relativa y la temperatura, y la reducción en el impacto de las heladas, equiparable con la que proporcionan matorrales y bosques nativos (Groenendijk et al. 2005c). El uso de las PEX como facilitadoras de la sucesión ha sido descrito en varios trabajos (Groenendijk et al. 2005c, Corredor & Vargas 2007, León 2007, Rodríguez & Vargas 2009, Calviño-Cancela et al. 2012, Forbes et al. 2015) y su éxito se ha asociado en Colombia con la introducción de especies sucesionales tardías bajo sus doseles, la apertura de claros para favorecer la regeneración, la remoción de acículas u hojarasca y la aplicación de enmiendas al suelo.
Varias especies reportadas en este estudio son reconocidas como pioneras en los bosques andinos secundarios (Cavelier & Santos 1999, Vargas & GREUNAL 2007, Vargas 2008, Vargas et al. 2009). La composición de especies del área se asemeja a la transición sucesional de matorrales a bosques que propuso Cortés et al. (1999) y a los bosques secundarios andinos bajos de los cerros de Bogotá descritos por Cuatrecasas (1934), Cleef & Hooghiemstra (1984) y Cortés (2003). La composición florística y la fase sucesional de varios sectores del área piloto pueden ser producto de la reducción de la cobertura de U. europaeus por las actividades de restauración, el manejo de las coberturas PEX, y la introducción de especies nativas.
Se resalta la recolonización de especies nativas clave como M. squamulosa y V. cylindrostachya, que sin ser introducidas con los diseños de restauración, han alcanzado un alto IVI en varias coberturas. P. bogotense y B. latifolia son frecuentes como parte de la regeneración natural.
Los análisis de similitud que muestran la cercanía de MDE y PEX en términos de composición florística, pueden indicar por un lado rutas sucesionales semejantes, y por el otro, si se tiene en cuenta que la introducción de especies en el área, la selección de rasgos de vida comparables para ambos tipos de coberturas debido a sus posibles similitudes microclimáticas (Groenendijk et al. 2005c). La composición florística y la estructura de la vegetación en el área indican que la restauración se encuentra en etapas iniciales a intermedias y los esfuerzos deben continuar a pesar de que no se puede garantizar la eliminación total de las especies exóticas e invasoras. Debido a las características del área y de las coberturas, es necesario asegurar la regularidad del manejo de áreas intervenidas para evitar la reinvasión de las especies exóticas en estos fragmentos. Adicionalmente, se recomienda refinar el proceso de selección de especies a partir de sus rasgos de historia de vida, sus afinidades sucesionales y las características edáficas de las zonas tratadas.