BEDOYA HINCAPIE, CLAUDIA MILENA et al. PHYSICAL-CHEMICAL PROPERTIES OF BISMUTH AND BISMUTH OXIDES: SYNTHESIS, CHARACTERIZATION AND APPLICATIONS. Dyna rev.fac.nac.minas [online]. 2012, vol.79, n.176, pp.139-148.
ISSN 0012-7353.
|
|
[2] Olaya Flórez, J. J. and Marulanda, D., Propiedades eléctricas de nano-multicapas de Cr/CrN producidas por la Técnica de Sputtering con Magnétrón Desbalanceado, revista Dyna, 168, pp. 53-57, 2011. [ Links ] [3] Tobón, J. I., Restrepo, O. J. and Payá Bernabeu, J.J., Adición de Nanopartículas al Cemento Portland, revista Dyna, 152, pp. 277-291, 2007. [ Links ] [4] Du, X., Tsai, S., Maslov, D.L. and Hebard, A.F., Metal - Insulator - Like Behavior in Semimetallic Bismuth and Graphite, Phys. Rev. Lett., 94, pp. 166601-166604, 2005. [ Links ] [5] Postel, M. and Duñach, E., Bismuth derivatives for the oxidation of organic compounds, Coordin. Chem. Rev., 155, pp. 127-144, 1996. [ Links ] [6] Gribanov, E.N., Markov, O.I. and Khripunov, Y.V., When does Bismuth become a semimetal?, Nanotechnologies in Russia, 6, pp. 536-596, 2011. [ Links ] [7] Konopko, L., Huber, T. And Nikolaeva, A., Quantum Interference and surface states effects in Bismuth nanowires, J. Low Temp. Phys., 158, pp. 523-529, 2010. [ Links ] [8] Gao, Z., Qin, H., Yan, T., Liu, H. and Wang, J., Structure and resistivity of bismuth nanobelts in situ synthesized on silicon wafer through an ethanol-thermal method, J. Solid State Chemistry, 184, pp. 3257-3261, 2011. [ Links ] [9] Timur, S. And Anik, Ü., a-Glucosidase based bismuth film electrode for inhibitor detection, Anal. Chim. Acta, 598, pp. 143-146, 2007. [ Links ] [10] Lee, G.-J., Kim, C. K., Lee, M. K. and Rhee, C. K., Effect of phase stability degradation of bismuth on sensor characteristics of nano-bismuth fixed electrode. Talanta, 83, pp. 682-685, 2010. [ Links ] [11] Chen, H.Y., Wu, L., Ren, C., Luo, Q.Z., Xie, Z.H., Jiang, X., Zhu, S.P., Xia, Y.K. and Luo, Y.R., The effect and mechanism of bismuth doped lead oxide on the performance of lead-acid batteries, J. Power Sour., 95, pp. 108-118, 2001. [ Links ] [12] Hofmann, Ph., The surfaces of bismuth: Structural and electronic properties, Prog. Surf. Sci., 81, pp. 191-245, 2006. [ Links ] [13] Albella, J.M., Láminas delgadas y recubrimientos: preparación, propiedades y aplicaciones, Solana e Hijos A.G., Madrid, 2003. [ Links ] [14] Lin, Y.-M., Sun, X. and Dresselhaus, M.S., Theoretical investigation of thermoelectric transport properties of cylindrical Bi nanowires. Phys. Rev. B, 62, pp. 4610-4623, 2000. [ Links ] [15] Song, D. W., Shen, W.-N., Dunn, B., Moore, C.D., Goorsky, M.S., Radetic, T., Gronsky, R. and Chen, G., Thermal Conductivity Of Nanoporous Bismuth Thin Films, Appl. Phys. Lett., 84, pp. 1883-1885, 2004. [ Links ] [16] Hasegawa, Y., Ishikawa, Y., Komine, T., Huber, T.E., Suzuki, A., Morita, H. And Shirai, H., Magneto-Seebeck Coefficient Of A Bismuth Microwire Array In A Magnetic Field, Appl. Phys, Lett., 85, pp. 917-919, 2004. [ Links ] [17] Yang, B., Li, C., Hu, H., Yang, X., Li, Q. and Qian, Y., A room- temperature route to bismuth nanotube arrays, Eur. J. Inorg. Chem., 2003, pp. 3699-3702, 2003. [ Links ] [18] Fu, R., Xu, S., Lu, Y-N. and Zhu, J-J., Synthesis and Characterization of Triangular Bismuth Nanoplates, J. Cryst. Growth Des., 5(4), 1379-1385, 2005. [ Links ] [19] Wang, J., Wnag, X., Peng, Q. and Li. Y. Synthesis and Characterization of Bismuth Single-Crystalline Nanowires and Nanospheres, Inorg. Chem., 43(23), pp. 7552-7556, 2004. [ Links ] [20] Rohr, O., Bismuth - the new ecologically green metal for modern lubricating engineering, Ind. Lubr. Tribol., 54, pp. 153-164, 2002. [ Links ] [21] Zhao, Y., Zhang, Z. and Dang, H., A simple way to prepare bismuth nanoparticles, Mater. Lett., 58, pp. 790-793, 2004. [ Links ] [22] Kharissova, O. V., Osorio, M., Kharisov, B. I., Yacamán, M.J. and Ortiz Méndez, U., A comparison of bismuth nanoforms obtained in vacuum and air by microwave heating of bismuth powder, Mater. Chem. Phys., 121, pp. 489-496, 2010. [ Links ] [23] Mastrovito, C., Lekse, J.W. and Aitken, J. A., Rapid solid-state synthesis of binary group 15 chalcogenides using microwave irradiation. J. Solid State Chem., 180, pp. 3262-3270, 2007. [ Links ] [24] Wang, L., Cui, Z.-L. and Zhang, Z.-K., Bi nanoparticles and Bi2O3 nanorods formed by thermal plasma and heat treatment, Surf. Coat. Tech., 201, pp. 5330-5332, 2007. [ Links ] [25] Liu, H. and Wang, Z.L., Bismuth spheres grown in self-nested cavities in a silicon wafer, J. Am. Chem, Soc., 127, pp. 15322-15326, 2005. [ Links ] [26] Lin, G., Tan, F., Luo, F., Chen, D., Zhao, Q. and Qiu, J., Linear and nonlinear optical properties of glasses doped with Bi nanoparticles. J. Non-Crystalline Solids, 357, pp. 2312-2315, 2011. [ Links ] [27]Leontie, L., Caraman, M., Delibas, M. and Rusu, G.I. Optical properties of bismuth trioxide thin films. Mater. Res. Bull., 36, pp. 1629-1637, 2001. [ Links ] [28] Zhang, L., Hashimoto, Y., Taishi, T., Nakamura, I. and Ni, Q.-Q., Fabrication of flower-shaped Bi2O3 superstructure by a facile template-free process, Appl. Surf. Sci., 257, pp. 6577-6582, 2011. [ Links ] [29] Nowak-Wozny, D., Janiczek, T., Mielcarek, W. and Gajewski. J.B., Fractional electrical model for modified bismuth oxide. J. Electrostatics, 67, pp. 18-21, 2009. [ Links ] [30] Wang, Y., Zhao, J. and Wang. Z., A simple low-temperature fabrication of oblique prism-like bismuth oxide via a one-step aqueous process, Colloid Surface A, 377, pp. 409-413, 2011. [ Links ] [31] Schuisky, M. and Härsta, A., Epitaxial growth of Bi2O2.33 by halide Cvd, Chem. Vap. Depos., 2(6), pp. 235-238, 1996. [ Links ] [32] Li, L., Yang, Y., Fang, X., Kong, M., Li, G., Zhang., L., Diameter-dependent electrical transport properties of bismuth nanowire arrays. Communications, 141, pp. 492-496, 2007. [ Links ] [33] Lee, J.H., Ohara, S., Nagashima, T., Hasegawa, T., Sugimoto, N., Igarashi, K., Katoh, K. and Kikuchi, K., Clock Recovery and Demultiplexing of High-Speed OTDM Signal Through Combined Use of Bismuth Oxide Nonlinear Fiber and Erbium-Doped Bismuth Oxide Fiber, IEEE Photonic Tech L., 17, pp. 2658-2660, 2005. [ Links ] [34] Vedadi, A., Jamshidifar, M. and Marhic, M. E., Continuous-Wave Bismuth-Oxide One-Pump Fiber Optical Parametric Amplifier, 34th European Conference On Optical Communication (ECOC 2008), IEEE, Brussels, 2008. [ Links ] [35] Scaffardi, M., Fresi, F., Meloni, G., Bogoni, A., Poti, L. and Calabretta, N., 160 Gbit/s OTDM demultiplexer exploiting 1-meter-long bismuth oxidebased fiber, in Proc. IEEE LEOS Annu. Meeting, pp. 918-919, 2005. [ Links ] [36] Leontie, L., Caraman, M., Alexe, M. and Harnagea, C., Structural and optical characteristics of bismuth oxide thin films. Surf. Sci., 507-510, pp. 480-85, 2002. [ Links ] [37] Orlov, V. G., Bush, A. A., Ivanov, S. A. and Zhurov, V.V., Anomalies in the physical properties of the a form of bismuth oxide. Phys. Solid State, 39(5), pp. 770-774,1997. [ Links ] [38] Sammes, N. M., Tompsett, G. A., Naè Fe, H. and Aldingera, F., Bismuth Based Oxide Electrolytes- Structure and Ionic Conductivity. J. Eur. Ceramic Society, 19, pp. 1801-1826, 1999. [ Links ] [39] Mairesse, G., In Fast Ion Transport in Solids, ed. B. Scrosati, Kluver, Amsterdam, 271, 1993. [ Links ] [40] Mei, Z.W., Liu, Y., Wang, H., Gao, S.J., Wen, X.G., Gu, L., Qiu, Y.F. and Yang, S.H., Facile and Controllable Growth of ZnO 1D Nanostructure Arrays on Zn Substrate by Hydrothermal Process, J. Nanosci. Nanotechnol., 10, 3123-30, 2010. [ Links ] [41] Fan, H.T., Teng, X.M., Pan, S.S., Ye, C., Li, G.H. and Zhang, L.D., Optical properties of d-Bi2O3 thin films grown by reactive sputtering, Appl. Phys. Lett., 87, pp. 231916-231918, 2005. [ Links ] [42] Greenberg, Y., Yahel, E., Caspi, E.N., Benmore, C., Benuneu, B., Dariel, M.P. and Makov, G. Evidence for a temperature-driven structural transformation in liquid bismuth, Europhysics Lett., 86, 36004, 2009. [ Links ] [43] Qiu, Y., Yang, M., Fan, H., Zuo, Y., Shao, Y., Xu, Y., Yang, X. and Yang, S., Phase-transitions of a- and ß-Bi2O3 nanowires. Mater. Lett., 65, pp. 780-782, 2011. [ Links ] [44] Qiu, Y., Liu, D., Yang, J. and Yang, S., Controlled Synthesis of Bismuth Oxide Nanowires by an Oxidative Metal Vapor Transport Deposition Technique, Adv. Mater., 18, pp. 2604-2608, 2006. [ Links ] [45] Kang, S.W. and Rhee, S.W., Growth of bismuth oxide films by direct liquid injection-metal organic chemical vapor deposition with Bi(tmhd)3 (tmhd: 2,2,6,6-tetramethyl-3,5-heptanedione). Thin Solid Films, 468, pp. 79-83, 2004. [ Links ] [46] Ida, S., Ogata, C., Unal, U., Izawa, K., Inoue, T., Altuntasoglu, O. and Matsumoto, Y., Preparation of a Blue Luminescent Nanosheet Derived from Layered Perovskite Bi2SrTa2O9, J. Am. Chem. Soc., 129, pp. 8956-8957, 2007. [ Links ] [47] Yasuda, N., Miyayama, M. and Kudo, T., Oxide ion conductivity of bismuth layer-structured Bi2K1-xNb2O8.5-d, Solid State Ionics, 133, pp. 273-278, 2000. [ Links ] [48] Kim, H.G., Hwang, D.W. and Lee, J.S., An undope, single-phase oxide photocatalyst working under visible light, J. Am. Chem. Soc., 126, pp. 8912-8913, 2004. [ Links ] [49] Zheng, K., Zhou, Y., Gu, L., Mo, X., Patzke, G. R. and Chen, G., Humidity sensors based on Aurivillius type Bi2MO6 (M=W, Mo) oxide films. Sensors and Actuators B, 148, pp. 240-246, 2010. [ Links ] [50] Suhua, F., Wen, C., Fengqing, Z. and Guangda, H., Effects of Excess Bismuth on Structure and Properties of SrBi4Ti4O15 Ceramics. Journal of Rare Earths, 25, pp. 317-321, 2007. [ Links ] [51] Zulhadjri, Prijamboedi, B., Nugroho, A.A., Mufti, N., Fajar, A., Palstra, T.T.M. and Ismunandar. Aurivillius phases of PbBi4Ti4O15 doped with Mn3+ synthesized by molten Salt technique: Structure, dielectric, and magnetic properties. J. Solid State Chemistry, 184, pp. 1318-1323, 2011. [ Links ] [52] Jin, S., Miranda Salvado, I. M. and Costa, M. E., Structure, dielectric and ferroelectric anisotropy of Sr2-xCaxBi4Ti5O18 ceramics. Mater. Res. Bull., 46, pp. 432-437, 2011. [ Links ] [53] Watanabe, T. and Funakubo, H., Controlled crystal growth of layered-perovskite thin films as an approach to study their basic properties. J. Appl. Phys., 100, 051602-11, 2006. [ Links ] [54] Anlin Golda, R., Marikani, A. and Pathinettam Padiyan, D., Mechanical synthesis and characterization of Bi4Ti3O12 nanopowders. Ceram. Int., 37, pp. 3731-3735, 2011. [ Links ] [55] Jardiel, T., Caballero, A.C. and Villegas, M., Aurivillius ceramics: Bi4Ti3O12-based piezoelectrics. J. Ceramic Society of Japan, 116(4), pp. 511-518, 2008. [ Links ] [56] Henriques, E.I., Kim, H.J., Haluska, M.S., Edwards, D.D. and Misture, S.T., Solid solubility and electrical conduction mechanisms in 3-layer Aurivillius ceramics, Solid State Ionics, 178, pp. 1175-1179, 2007. [ Links ] [57] Schwarzkopf, J., Dirsyte, R., Devi, A., Kwasniewski, A., Schmidbauer, M., Wagner, G., Michling, M., Schmeisser, D. and Fornari, R., Influence of Na on the structure of Bi4Ti3O12 films by liquid-delivery spin MOCVD, Thin Solid Films, 519, pp. 5754-5759, 2011. [ Links ] [58] Pirovano, C., Saiful Islam, M., Vannier, R.-N., Nowogrocki, G. and Mairesse, G., Modelling the crystal structures of Aurivillius phases. Solid State Ionics, 140, pp. 115-123, 2001. [ Links ] [59] Du, H., Li, Y., Shi, X. and Liu, C., Relaxor behavior of bismuth layer-structured ferroelectric ceramic with m=2, Solid State Commun., 148, pp. 357-360, 2008. [ Links ] [60] Shen, Y., Clarke, D.R. and Fuierer, P.A., Anisotropic thermal conductivity of the Aurivillus phase, bismuth titanate Bi4Ti3O12: A natural nanostructured superlattice. Appl. Phys. Lett., 93, 102907-3, 2008. [ Links ] [61] Li, J.-B., Huang, Y. P., Rao, G. H., Liu, G. Y., Luo, J., Chen, J. R. and Liang, J. K., Ferroelectric transition of Aurivillius compounds Bi5Ti3FeO15 and Bi6Ti3Fe2O18. Appl. Phys. Lett., 96, 222903 - 3, 2010. [ Links ] [62] Jovalekic, C., Zdujic, M. and Atanasoska, LJ., Surface analysis of bismuth titanate by Auger and X-ray photoelectron spectroscopy. J. Alloys and Compounds, 469, pp. 441-444, 2009. [ Links ] [63] Jardiel, T., Caballero, A. C., Fernández, J. F. and Villegas, M., Domain structure of Bi4Ti3O12 ceramics revealed by chemical etching. J. European Ceramic Society, 26, pp. 2823-2826, 2006. [ Links ] [64] Guo, D., Li, M., Wang, J., Liu, J., Yu, B. and Yang, B., Ferroelectric properties of Bi3.6Ho0.4Ti3O12 thin films prepared by sol-gel method, Appl. Phys. Lett., 91, 232905-3, 2007. [ Links ] [65] Boffoue, M. O., Jacquot, A., Duclere, J.-R., Guilloux-Viry, M., Hejtmanek, J., Dauscher, A., and Lenoir, B., Thermal conductivity of SrBi2Nb2O9 ferroelectric thin films, Appl. Phys. Lett., 89, 092904-3, 2006. [ Links ] [66] Chia, W.-K., Chen, Y.-C., Yang, C.-F., Young, S.-L., Chiang, W.-T. and Tsai, Y.-T., Characteristics of Bi4Ti3O12 thin films on ITO/glass and Pt/Si substrates prepared by R.F. sputtering and rapid thermal annealing, J Electroceram, 17, pp. 173-177, 2006. [ Links ] [67] Wang, D., Tang, K., Liang, Z. and Zheng, H., Synthesis, crystal structure, and photocatalytic activity of the new three-layer aurivillius phases, Bi2ASrTi2TaO12 (A=Bi, La), J. Solid State Chemistry, 183, pp. 361-366, 2010. [ Links ] [68] Yu, J. and Kudo, A., Effects of Structural Variation on the Photocatalytic Performance of Hydrothermally Syn-thesized BiVO4, Adv. Funct. Mater., 16, pp. 2163-2169, 2006. [ Links ] [69] Fu, H., Zhang, S., Xu, T. and Zhu, Y., Photocatalytic Degradation of RhB by Fluorinated Bi2WO6 and Distributions of the Intermediate Products, J. Chen. Environ. Sci. Technol., 42, pp. 2085-2091, 2008. [ Links ] [70] Masiukaite, E., Banys, J., Sobiestianskas, R., Ramoska. T., Khomchenko, V.A. and Kiselev, D.A., Conductivity investigations of Aurivillius-type Bi2.5Gd1.5Ti3O12 ceramics, Solid State Ionics, 188, pp. 50-52, 2011. [ Links ] [71] Maczka, M., Ptak, M., Kepinski, L., Tomaszewski, P.E. and Hanuza, J., X-ray, SEM, Raman and IR studies of Bi2W2O9 Prepared by Pechini method, Vib. Spectrosc., 53, pp.199-203, 2010. [ Links ] [72] Duan, F., Zheng, Y. and Chen, M., Enhanced photocatalytic activity of bismuth molybdate via hybridization with carbon, Mater. Lett., 65, pp. 191-193, 2011. [ Links ] [73] Kumar, S. and Varma, K.B.R., Structural, dielectric and ferroelectric properties of four-layer Aurivillius phase Na0.5La0.5Bi4Ti4O15, Mater. Sci. Eng. B, 172, pp. 177-182, 2010. [ Links ] [74] Halim, S.A., Khawaldeh, S.A., Mohamed, S.B. and Azhan, H. Superconducting properties of Bi2-xPbxSr2Ca2Cu3Oy system derived via sol-gel and solid state routes, Mater. Chem. Phys., 61, pp. 251-259, 1999. [ Links ] [75] Peng, D., Sum, H., Wang, X., Zhang, J., Tang, M. and Yao, T., Blue excite photoluminescence of Pr doped CaBi2Ta2O9 based ferroelectrics, J. Alloys and Compounds, 511, pp. 159-162, 2012. [ Links ] [76] Simoes, A.Z., Cavalcante, L.S., Riccardi, C.S., Varela, J.A. and Longo, E., Improvement of fatigue resistance on La modified BiFeO3 thin films. Current Applies Physics, 9, pp. 520-523, 2009. [ Links ] [77] Missyul, A.B., Zvereva, I.A., Palstra, T.T.M. and Kurbakov, A.I., Double-layered Aurivillius-type ferroelectrics with magnetic moments. Mater. Res. Bull., 45, pp. 546-550, 2010. [ Links ] [78] Suresh, M.B., Ramana, E.V., Babu, S.N. and Suryanarayana, S.V., Comparison of electrical and dielectric properties of BLSF materials in Bi-Fe-Ti-O and Bi-Mn-Ti-O systems, Ferroelectrics, 332, pp. 57-63, 2006. [ Links ] [79] Chi, Z.H., Xiao, C.J., Feng, S.M., Li, F.Y. and Jin, C.Q., Manifestation of ferroelectro-magnetism in multiferroic BiMnO3, J.Appl.Phys., 98, 103519-5, 2005. [ Links ] [80] Gidding, A.T., Stennett, M.C., Reid, D.P., Mccabe, E.E., Greaves, C. and Hyatt, N.C., Synthesis, structure and characterization of the n=4 Aurivillius phase Bi5Ti3CrO15, J. Solid State Chemistry, 184, pp. 252-263, 2011. [ Links ] [81] Hou, J., Jiao, S., Zhu, H. and Kumar, R.V., Bismuth titanate pyrochlore microspheres: Directed synthesis and their visible light photocatalytic activity, J. Solid State Chemistry, 184, pp. 154-158, 2011. [ Links ] [82] Nippolainen, E., Kamshilin, A.A., Prokofiev, V.V. and Jaaskelainen, T., Combined formation of a self-pumped phase-conjugate mirror and spatial subharmonics in photorefractive sillenites, Appl. Phys. Lett., 78, 859-3, 2001. [ Links ] [83] Zhu, X., Zhang, J. and Chen, F., Study on visible light photocatalytic activity and mechanism of spherical Bi12TiO20 nanoparticles prepared by low-power hydrothermal method, Appl. Catal. B: Environ., 102, pp. 316-322, 2011. [ Links ] |