SciELO - Scientific Electronic Library Online

 
vol.41 issue1Curvature on reductive homogeneous spacesCorcoran's aristotelian syllogistic as a subsystem of first-order logic author indexsubject indexarticles search
Home Pagealphabetic serial listing  

Services on Demand

Journal

Article

Indicators

Related links

  • On index processCited by Google
  • Have no similar articlesSimilars in SciELO
  • On index processSimilars in Google

Share


Revista Colombiana de Matemáticas

Print version ISSN 0034-7426

Rev.colomb.mat. vol.41 no.1 Bogotá Jan./June 2007

 

Semimatroids and their Tutte polynomials

Semimatroides y sus polinomios de Tutte

FEDERICO ARDILA1

1San Francisco State University, Department of Mathematics, San Francisco CA, USA 94110, USA.
E-mail: federico@math.sfsu.edu


Abstract

We define and study semimatroids, a class of objects which abstracts the dependence properties of an affine hyperplane arrangement. We show that geometric semilattices are precisely the posets of flats of semimatroids. We define and investigate the Tutte polynomial of a semimatroid. We prove that it is the universal Tutte-Grothendieck invariant for semimatroids, and we give a combinatorial interpretation for its non-negative integer coefficients.

Key words: Semimatroid, pointed matroid, geometric semilattice, hyperplane arrangement, Tutte polynomial.


2000 Mathematics Subject Classification. Primary: 05B35, 06A12, 52C35.

Resumen

En este artículo definimos y estudiamos las semimatroides, una clase de objetos que abstraen las propiedades de dependencia de un arreglo de hiperplanos afines. Demostramos que un semiretículo es geométrico si y sólo si es el semiretículo de conjuntos cerrados de una semimatroide. Definimos e investigamos el polinomio de Tutte de una semimatroide. Demostramos que es la invariante universal de Tutte-Grothendieck para la clase de semimatroides, y presentamos una interpretación combinatoria de sus coeficientes, que son enteros no negativos.

Palabras clave: Semimatroide, matroide, semiretículo geométrico, hiperplano afín, polinomio de Tutte.


Texto completo disponible en PDF


References

[1] F. ARDILA, Enumerative and algebraic aspects of matroids and hyperplane arrangements, Ph.D. thesis, Massachusetts Institute of Technology, 2003.         [ Links ]

[2] F. ARDILA, Computing the Tutte polynomial of a hyperplane arrangement. Pacific J. Math. 230 (2007) 1-26.         [ Links ]

[3] G. BIRKHOFF, Abstract linear dependence in lattices, Amer. J. Math. 57 (1935), 800-804.         [ Links ]

[4] A. BJÖRNER, Homology and shellability of matroids and geometric lattices, in N. White (ed.), Matroid applications, Encyclopedia of Mathematics and Its Applications, 40, Cambridge Univ. Press, Cambridge, 1992, 123-225.         [ Links ]

[5] T. BRYLAWSKI, A combinatorial model for series-parallel networks, Trans. Amer. Math. Soc. 154 (1971), 1-22.         [ Links ]

[6] T. BRYLAWSKI, A decomposition for combinatorial geometries, Trans. Amer. Math. Soc. 171 (1972), 235-282.         [ Links ]

[7] T. BRYLAWSKI, Appendix of matroid cryptomorphisms, in N. White (ed.), Theory of matroids, Encyclopedia of Mathematics and Its Applications, 26, Cambridge Univ. Press, Cambridge, 1986, 298-310.         [ Links ]

[8] T. BRYLAWSKI & J. OXLEY, The Tutte polynomial and its applications, in N. White (ed.), Matroid applications, Encyclopedia of Mathematics and Its Applications, 40, Cambridge Univ. Press, Cambridge, 1992, 123-225.         [ Links ]

[9] S. CHAIKEN, The Tutte polynomial of a ported matroid, J. Combin. Theory Ser. B. 46 (1989), 96-117.         [ Links ]

[10] H. H. CRAPO, Single-element extensions of matroids, J. Res. Nat. Bur. Standards Sect. B. 69B (1965), 55-65.         [ Links ]

[11] H. H. CRAPO, The Tutte polynomial, Aequationes Math. 3 (1969), 211-229.         [ Links ]

[12] H. CRAPO & G.-C. ROTA, On the foundations of combinatorial theory: combinatorial geometries, preliminary edition, MIT Press, Cambridge, MA, 1970.         [ Links ]

[13] T. A. DOWLING & D. G. KELLY, Elementary strong maps between combinatorial geometries, in Colloquia Internazionale sulle Teorie Combinatorie, Tomo II, Accad. Naz. Lincei, Rome, 1976, 121-152.         [ Links ]

[14] Y. KAWAHARA, On matroids and Orlik-Solomon algebras, Annals of Combin. 8 (2004), 63-80.         [ Links ]

[15] M. M. KOVALEV, Polyhedral semimatroids. Izv Akad Nauk BSSR, Ser. Fiz.-Mat. Nauk 3 (1979), 8-12.         [ Links ]

[16] J. P. S. KUNG, Strong maps, in N. White (ed.), Theory of matroids, Encyclopedia of Mathematics and Its Applications, 26, Cambridge Univ. Press, Cambridge, 1986, 298-310.         [ Links ]

[17] M. LAS VERGNAS, The Tutte polynomial of a morphism of matroids I. Set-pointed matroids and matroid perspectives, Ann. Inst. Fourier, Grenoble 49 (1999) 3, 973-1015.         [ Links ]

[18] P. ORLIK & H. TERAO, Arrangements of hyperplanes, Springer-Verlag, Berlin/Heidelberg/New York, 1992.         [ Links ]

[19] J. G. OXLEY & D. J. A. WELSH, The Tutte polynomial and percolation, in J.A. Bondy and U.S.R. Murty (eds.), Graph theory and related topics, Academic Press, New York, 1979, 329-339.         [ Links ]

[20] J. G. OXLEY, Matroid theory, Oxford University Press, New York, 1992.         [ Links ]

[21] V. REINER, An interpretation for the Tutte polynomial, European J. Combin. 20 (1999), 149-161.         [ Links ]

[22] R. P. STANLEY, Enumerative Combinatorics, vol. 1, Wadsworth and Brooks - Cole, Belmont, CA, 1986; reprinted by Cambridge University Press, Cambridge, 1997.         [ Links ]

[23] R. P. STANLEY, An introduction to hyperplane arrangements, Lecture Notes, Park City Mathematics Institute, 2004.         [ Links ]

[24] W. T. TROTTER, Combinatorics and Partially Ordered Sets, The Johns Hopkins University Press, Baltimore and London, 1992.         [ Links ]

[25] W. T. TUTTE, A contribution to the theory of chromatic polynomials, Canad. J. of Math. 6 (1953), 80-91.         [ Links ]

[26] W. T. TUTTE, Lectures on matroids, J. Res. Nat. Bur. Stand. 69B (1965), 1-48.         [ Links ]

[27] P. VADERLIND, Clutters and semimatroids, Europ. J. Combinatorics. 7 (1986) 271-282.         [ Links ]

[28] M. L. WACHS & J. W. WALKER, On geometric semilattices, Order. 2 (1986), 367-385.         [ Links ]

[29] D. J. A. WELSH, Matroid theory, Academic Press, New York, 1976.         [ Links ]

[30] N. WHITE (ed), Theory of matroids, Cambridge University Press, Cambridge, 1986.         [ Links ]

[31] H. WHITNEY, A logical expansion in mathematics, Bull. Amer. Math. Soc. 38 (1932), 572-579.         [ Links ]

[32] T. ZASLAVSKY, Totally frustrated states in the chromatic theory of gain graphs. Preprint, 2006. \texttt{math.CO/0609048}.         [ Links ]

(Recibido en noviembre de 2006. Aceptado en abril de 2007)

Creative Commons License All the contents of this journal, except where otherwise noted, is licensed under a Creative Commons Attribution License