SciELO - Scientific Electronic Library Online

 
vol.53 número2El operador derivada formal y números multifactoriales índice de autoresíndice de materiabúsqueda de artículos
Home Pagelista alfabética de revistas  

Servicios Personalizados

Revista

Articulo

Indicadores

Links relacionados

  • En proceso de indezaciónCitado por Google
  • No hay articulos similaresSimilares en SciELO
  • En proceso de indezaciónSimilares en Google

Compartir


Revista Colombiana de Matemáticas

versión impresa ISSN 0034-7426

Rev.colomb.mat. vol.53 no.2 Bogotá jul./dic. 2019  Epub 20-Mar-2020

 

Artículos originales

Absoluteness theorems for arbitrary Polish spaces

Teoremas de absolutidad para espacios polacos arbitrarios

DIEGO ALEJANDRO MEJÍA1 

ISMAEL E. RIVERA-MADRID2 

1Shizuoka University, Shizuoka, Japan. Faculty of Science Smzuok A University 836 Ohya, Suruga-ku, 422-8529 Shizuoka, Japan e-mail: diego.mejia@shizuoka.ac.jp

2Institución Universitaria Pascual Bravo, Medellín, Colombia. Faculty of Engineering Institución Universitaria Pascual Bravo Calle 73 No. 73A - 226 Medellín, Colombia e-mail: ismael.rivera@pascualbravo.edu.co


ABSTRACT.

By coding Polish metric spaces with metrics on countable sets, we propose an interpretation of Polish metric spaces in models of ZFC and extend Mostowski's classical theorem of absoluteness of analytic sets for any Polish metric space in general. In addition, we prove a general version of Shoenfield's absoluteness theorem.

Key words and phrases. Mostowski's Absoluteness Theorem; Shoenfield's Absoluteness Theorem; Polish metric spaces

RESUMEN.

Mediante la codificación de espacios polacos con métricas de conjuntos contables, proponemos una interpretación de espacios métricos polacos en modelos de ZFC y extendemos el clósico Teorema de Absolutidad (para conjuntos analíticos) de Mostowski para cualquier espacio métrico polaco en general. Adicionalmente, probamos una versioón general del Teorema de Absolutidad de Shoenfield.

Palabras y frases clave. Teorema de Absolutidad de Mostowski; Teorema de Absolutidad de Shoenfield; espacios metricos polacos

Full text available only in PDF format.

Acknowledgements.

The first author is supported by Grant-in-Aid 18K13448 for Early Career Scientists, Japan Society for the Promotion of Science. Both authors are supported by the grant no. IN201711, Dirección Operativa de Investigación, Institución Universitaria Pascual Bravo.

References

[1] Miguel A. Cardona and Diego A. Mejía, On cardinal characteristics of Yorioka ideals, Math. Log. Quart. 65 (2019), no. 2, 170-199. [ Links ]

[2] John D. Clemens, Isometry of Polish metric spaces, Ann. Pure Appl. Logic 163 (2012), no. 9, 1196-1209. MR 2926279 [ Links ]

[3] Su Gao, Invariant descriptive set theory, Pure and Applied Mathematics (Boca Raton), vol. 293, CRC Press, Boca Raton, FL, 2009. MR 2455198 [ Links ]

[4] Thomas Jech, Set theory, Springer Monographs in Mathematics, Springer-Verlag, Berlin, 2003, The third millennium edition, revised and expanded. MR 1940513 (2004g:03071) [ Links ]

[5] Alexander S. Kechris, Classical descriptive set theory, Graduate Texts in Mathematics, vol. 156, Springer-Verlag, New York, 1995. MR 1321597 (96e:03057) [ Links ]

[6] S. C. Kleene, On the forms of the predicates in the theory of constructive ordinals. II, Amer. J. Math. 77 (1955), 405-428. MR 0070595 [ Links ]

[7] Diego A. Mejia, Coding polish spaces, Kyōto Daigaku Surikaiseki Kenkyūsho Kōkyūroku (2017), no. 2050, 153-161. [ Links ]

[8] Yiannis N. Moschovakis, Descriptive set theory, second ed., Mathematical Surveys and Monographs, vol. 155, American Mathematical Society, Providence, RI, 2009. MR 2526093 [ Links ]

[9] A. Mostowski, A class of models for second order arithmetic, Bull. Acad. Polon. Sci. Ser. Sci. Math. Astr. Phys. 7 (1959), 401-404. (unbound insert). MR 0115908 [ Links ]

[10] J. R. Shoenfield, The problem of predicativity, Essays on the foundations of mathematics, Magnes Press, Hebrew Univ., Jerusalem, 1961, pp. 132-139. MR 0164886 [ Links ]

[11] Robert M. Solovay, A model o set-theory in which every set o reals is Lebesgue measurable, Ann. of Math. (2) 92 (1970), 1-56. MR 0265151 (Recibido en febrero de 2018. Aceptado en febrero de 2019) [ Links ]

Received: February 2018; Accepted: February 2019

2010 Mathematics Subject Classification. 03E15, 54H05

Creative Commons License Todo el contenido de esta revista, excepto dónde está identificado, está bajo una Licencia Creative Commons BY