Services on Demand
Journal
Article
Indicators
-
Cited by SciELO
-
Access statistics
Related links
-
Cited by Google
-
Similars in SciELO
-
Similars in Google
Share
Revista Colombiana de Matemáticas
Print version ISSN 0034-7426
Rev.colomb.mat. vol.39 no.1 Bogotá Jan./June 2005
Álvaro Lozano-Robledo
Dept. of Mathematics. Colby College, Waterville Maine 04901, USA.
e-mail: alozano@colby.edu
Abstract. Let p > 2 be a prime number and let Λ = Zp[[X]] be the ring of power series with p-adic integer coefficients. The special linear group of matrices SL(2, Λ) is equipped with several natural projections. In particular, let πX: SL(2, Λ) → SL(2; Zp) be the natural projection which sends X → 0. Suppose that G is a subgroup of SL(2; Λ) such that the projection H = πX(G) is known. In this note, different criteria are found which guarantee that the subgroup G of SL(2; Λ) is "as large as possible", i.e. G is the full inverse image of H. Criteria of this sort have interesting applications in the theory of Galois representations.
Keywords and phrases. Closed subgroups, special linear group, Iwasawa algebra.
2000 Mathematics Subject Classiffication. Primary: 15A33, 15A54, Secondary: 11F80.
Resumen. Sea p > 2 un primo y Λ = Zp[[X]] el anillo de series de potencias con coefficientes enteros p-adicos. El grupo lineal de matrices especial SL(2, Λ) es equipado con varias proyecciones naturales. En particular, πX: SL(2, Λ) → SL(2, Zp) es la proyección natural que envia X → 0. Suponga que G es un subgrupo de SL(2, Λ) tal que la proyección H = πX(G) es conocida. En este artículo se establecen diferentes criterios que garantizan que el subgrupo G de SL(2, Λ) es "tan grande como es posible"; esto es, G es la imagen inversa total de H. Criterios de esta naturaleza tienen importantes aplicaciones a la teoría de representaciones de Galois.
FULL TEXT IN PDF
[1] N. Boston, Appendix to [5], Compositio Mathematica 59 (1986), 261-264. [ Links ]
[2] H. Hida, Iwasawa modules attached to congruences of cusp forms, Annales Scientifiques de l' École Normale Supérieure, Quatrième Série (4) 19 no. 2 (1986), 231-273. [ Links ]
[3] H. Hida, Galois representations into GL2(Zp[[X]]) attached to ordinary cusp forms, Inventiones Mathematicae 85 no. 3 (1986), 545-613. [ Links ]
[4] A. Lozano-Robledo, On elliptic units and p-adic Galois representations attached to elliptic curves, To appear in the Journal of Number Theory. [ Links ]
[5] B. Mazur & A. Wiles, On p-adic analytic families of Galois representations, Compositio Mathematica 59 (1986), 231-264. [ Links ]
[6] D.E. Rohrlich, A deformation of the Tate module, Journal of Algebra 229 (2000), 280-313. [ Links ]
[7] D.E. Rohrlich, Modular units and the surjectivity of a Galois representation, Journal of Number Theory 107 (2004), 8-24. [ Links ]
[8] J.S. Rose, A Course on Group Theory, Dover Publications, Inc., New York, 1994. [ Links ]
[9] J-P. Serre, Abelian l-adic Representations and Elliptic Curves, W.A. Benjamin, Inc., New York, 1968. [ Links ]
[10] J-P. Serre, Propriétés galoisiennes des points d'ordre fini des courbes elliptiques, Inventiones Mathematicae 15 (1972), 259-331. [ Links ]
(Recibido en abril de 2005. Aceptado en mayo de 2005)