SciELO - Scientific Electronic Library Online

vol.82 número191A genetic algorithm to solve a three-echelon capacitated location problem for a distribution center within a solid waste management system in the northern region of Veracruz, MexicoTechnical efficiency of thermal power units through a stochastic frontier índice de autoresíndice de assuntospesquisa de artigos
Home Pagelista alfabética de periódicos  

Serviços Personalizados



Links relacionados

  • Em processo de indexaçãoCitado por Google
  • Não possue artigos similaresSimilares em SciELO
  • Em processo de indexaçãoSimilares em Google



versão impressa ISSN 0012-7353


MARMOLEJO-SAUCEDO, José Antonio  e  RODRIGUEZ-AGUILAR, Román. Short-term generation planning by primal and dual decomposition techniques. Dyna rev.fac.nac.minas [online]. 2015, vol.82, n.191, pp.58-62. ISSN 0012-7353.

This paper addresses the short-term generation planning (STGP) through thermoelectric units. The mathematical model is presented as a Mixed Integer Non Linear Problem (MINLP). Several works on the state of art of the problem have revealed that the computational effort of this problem grows exponentially with the number of time periods and number of thermoelectric units. Therefore, we present two alternatives to solve a STGP based on Benders' partitioning algorithm and Lagrangian relaxation in order to reduce the computational effort. The proposal is to apply primal and dual decomposition techniques, which exploit the structure of the problem to reduce solution time by decomposing the STGP into a master problem and a subproblem. For Benders' algorithm, the master problem is a Mixed Integer Problem (MIP) and for the subproblem, it is a Non Linear Problem (NLP). For Lagrangian relaxation, the master problem and the subproblem are MINLP. The computational experiments show the performance of both decomposition techniques applied to the STGP. These techniques allow us to save computation time when compared to some high performance commercial solvers.

Palavras-chave : Benders' algorithm; Lagrangian relaxation; subgradient; decomposition techniques; power generation.

        · resumo em Espanhol     · texto em Inglês     · Inglês ( pdf )