Servicios Personalizados
Revista
Articulo
Indicadores
Citado por SciELO
Accesos
Links relacionados
Citado por Google
Similares en SciELO
Similares en Google
Compartir
DYNA
versión impresa ISSN 0012-7353versión On-line ISSN 2346-2183
Resumen
ROSAS, David Antonio; BURGOS, Daniel; BRANCH, John Willian y CORBI, Alberto. Determinación automática de los límites de Atterberg con machine learning. Dyna rev.fac.nac.minas [online]. 2022, vol.89, n.224, pp.34-42. Epub 10-Feb-2023. ISSN 0012-7353. https://doi.org/10.15446/dyna.v89n224.102619.
En este estudio, determinamos el límite líquido (W1), el índice de plasticidad (PI) y el límite plástico (Wp) de suelos naturales finos con ayuda de machine-learning y métodos estadísticos. Ello permite localizarlos en la Carta de Plasticidad de Casagrande con una sola medida en extractores de presión-membrana. Los modelos de machine-learning mostraron ajustes en la determinación de W l apropiados para propósitos de diseño, comparados con métodos estandarizados. Ajustes similares se alcanzaron en la determinación de PI, mientras que las determinaciones de W p permiten ajustes apropiados para trabajos de control. Debido a que las técnicas más apropiadas se basaron en Regresión Lineal Múltiple y Máquinas de Soporte de Vectores, aportaron modelos de plasticidad explicables. En este sentido, Wl = (9.94 ± 4.2) + (2.25 ± 0.3) ∙pF4.2, PI = (-20.47 ± 5.6) + (1.48 ± 0.3) ∙pF4.2 + (0.21 ± 0.1) ∙F, y Wp = (23.32 ± 3.5) + (0.60 ± 0.2) ∙pF4.2 - (0.13 ± 0.04) ∙F. Por consiguiente, proponemos un método alternativo, automático, estático y multimuestra para enfrentar problemas frecuentes en la determinación de los Límites de Atterberg con ensayos normalizados.
Palabras clave : machine learning; límites de Atterberg; extractor de presión membrana; determinación; suelo.