Services on Demand
Journal
Article
Indicators
Cited by SciELO
Access statistics
Related links
Cited by Google
Similars in SciELO
Similars in Google
Share
Revista Colombiana de Matemáticas
Print version ISSN 0034-7426
Abstract
CAICEDO, ANDRÉS EDUARDO. Función de Goodstein. Rev.colomb.mat. [online]. 2007, vol.41, n.2, pp.381-391. ISSN 0034-7426.
La función de Goodstein Ģ:N → N es un ejemplo de una función recursiva de crecimiento rápido. Introducida en 1944 por R. L. Goodstein [9], Kirby y Paris [12] demostraron en 1982, usando técnicas de teoría de modelos, que el resultado de Goodstein de que Ģ es total, es decir, que Ģ(n) está definida para todo n Є N, no es un teorema de la Aritmética de Peano de primer orden. Calculamos la función de Goodstein en términos de la jerarquía de funciones de crecimiento rápido de Löb y Wainer; usando esto y resultados clásicos de teoría de la demostración acerca de esta jerarquía, el teorema de Kirby y Paris se sigue de inmediato. También calculamos las funciones de la jerarquía de Hardy en términos de las funciones de Löb y Wainer, con lo que obtenemos una nueva demostración de un resultado similar, debido a Cichon [2].
Keywords : Función de Goodstein; jerarquía de Hardy; jerarquía de crecimiento rápido; aritmética de Peano.