SciELO - Scientific Electronic Library Online

vol.39 issue1MODELAMIENTO ESTOCÁSTICO DE LA PÉRDIDA DE SECUENCIAS TELOMÉRICAS EN CÉLULAS CON VARIOS CROMOSOMASOn the Hurewicz theorem for wedge sum of spheres author indexsubject indexarticles search
Home Pagealphabetic serial listing  

Services on Demand




Related links

  • On index processCited by Google
  • Have no similar articlesSimilars in SciELO
  • On index processSimilars in Google


Revista Colombiana de Matemáticas

Print version ISSN 0034-7426

Rev.colomb.mat. vol.39 no.1 Bogotá Jan./June 2005


On certain closed subgroups of SL (2, Zp[[X]])


Álvaro Lozano-Robledo

Dept. of Mathematics. Colby College, Waterville Maine 04901, USA.


Abstract. Let p > 2 be a prime number and let Λ = Zp[[X]] be the ring of power series with p-adic integer coefficients. The special linear group of matrices SL(2, Λ) is equipped with several natural projections. In particular, let πX: SL(2, Λ) → SL(2; Zp) be the natural projection which sends X → 0. Suppose that G is a subgroup of SL(2; Λ) such that the projection H = πX(G) is known. In this note, different criteria are found which guarantee that the subgroup G of SL(2; Λ) is "as large as possible", i.e. G is the full inverse image of H. Criteria of this sort have interesting applications in the theory of Galois representations.

Keywords and phrases. Closed subgroups, special linear group, Iwasawa algebra.

2000 Mathematics Subject Classiffication. Primary: 15A33, 15A54, Secondary: 11F80.

Resumen. Sea p > 2 un primo y Λ = Zp[[X]] el anillo de series de potencias con coefficientes enteros p-adicos. El grupo lineal de matrices especial SL(2, Λ) es equipado con varias proyecciones naturales. En particular, πX: SL(2, Λ) → SL(2, Zp) es la proyección natural que envia X → 0. Suponga que G es un subgrupo de SL(2, Λ) tal que la proyección H = πX(G) es conocida. En este artículo se establecen diferentes criterios que garantizan que el subgrupo G de SL(2, Λ) es "tan grande como es posible"; esto es, G es la imagen inversa total de H. Criterios de esta naturaleza tienen importantes aplicaciones a la teoría de representaciones de Galois.



[1] N. Boston, Appendix to [5], Compositio Mathematica 59 (1986), 261-264.        [ Links ]

[2] H. Hida, Iwasawa modules attached to congruences of cusp forms, Annales Scientifiques de l' École Normale Supérieure, Quatrième Série (4) 19 no. 2 (1986), 231-273.        [ Links ]

[3] H. Hida, Galois representations into GL2(Zp[[X]]) attached to ordinary cusp forms, Inventiones Mathematicae 85 no. 3 (1986), 545-613.        [ Links ]

[4] A. Lozano-Robledo, On elliptic units and p-adic Galois representations attached to elliptic curves, To appear in the Journal of Number Theory.        [ Links ]

[5] B. Mazur & A. Wiles, On p-adic analytic families of Galois representations, Compositio Mathematica 59 (1986), 231-264.        [ Links ]

[6] D.E. Rohrlich, A deformation of the Tate module, Journal of Algebra 229 (2000), 280-313.        [ Links ]

[7] D.E. Rohrlich, Modular units and the surjectivity of a Galois representation, Journal of Number Theory 107 (2004), 8-24.        [ Links ]

[8] J.S. Rose, A Course on Group Theory, Dover Publications, Inc., New York, 1994.        [ Links ]

[9] J-P. Serre, Abelian l-adic Representations and Elliptic Curves, W.A. Benjamin, Inc., New York, 1968.        [ Links ]

[10] J-P. Serre, Propriétés galoisiennes des points d'ordre fini des courbes elliptiques, Inventiones Mathematicae 15 (1972), 259-331.        [ Links ]

(Recibido en abril de 2005. Aceptado en mayo de 2005)

Creative Commons License All the contents of this journal, except where otherwise noted, is licensed under a Creative Commons Attribution License