SciELO - Scientific Electronic Library Online

 
vol.49 número2Operador multiplicación en los espacios de Lebesgue con exponente variable índice de autoresíndice de materiabúsqueda de artículos
Home Pagelista alfabética de revistas  

Servicios Personalizados

Revista

Articulo

Indicadores

Links relacionados

  • En proceso de indezaciónCitado por Google
  • No hay articulos similaresSimilares en SciELO
  • En proceso de indezaciónSimilares en Google

Compartir


Revista Colombiana de Matemáticas

versión impresa ISSN 0034-7426

Rev.colomb.mat. vol.49 no.2 Bogotá jul./dic. 2015

https://doi.org/10.15446/recolma.v49n2.60450 

DOI: https://doi.org/10.15446/recolma.v49n2.60450

Intersection numbers of geodesic arcs

Números de Intersección de Arcos Geodésicos

Yoe Alexander Herrera Jaramillo1

1 Universidad Autónoma de Bucaramanga, Bucaramanga, Colombia
e-mail: yherrera743@unab.edu.co, yoeherrera@gmail.com


Abstract

For a compact surface S with constant curvature −κ (for some κ> 0) and genus g ≥ 2, we show that the tails of the distribution of the normalized intersection numbers i(α, β)/l(α)l(β) (where i(α, β) is the intersection number of the closed geodesics α and β and l(·) denotes the geometric length) are estimated by a decreasing exponential function. As a consequence, we find the asymptotic average of the normalized intersection numbers of pairs of closed geodesics on S. In addition, we prove that the size of the sets of geodesic arcs whose T -self-intersection number is not close to κT 2/(2π2(g − 1)) is also estimated by a decreasing exponential function. And, as a corollary of the latter, we obtain a result of Lalley which states that most of the closed geodesics α on S with l(α) ≤ T have roughly κl(α)2/(2π2(g−1)) self-intersections, when T is large.

Key words and phrases. geodesics, geodesic flow, geodesic currents, intersection number, mixing, ergodicity.


2010 Mathematics Subject Classification. 37d40.


Resumen

Para una superficie S con curvatura constante −κ (con κ> 0) y género g ≥ 2, mostramos que las colas de la distribución de i(α, β)/l(α)l(β) (donde i(α, β) es el número de intersección de las geodésicas cerradas α y β) se puede estimar con una función exponencial decreciente. Como consecuencia, encontramos el promedio asintótico de los números de intersecciones normalizados de los pares de geodésicas cerradas en S. Además, demostramos que el tamaño de los conjuntos de geodésicas cuyo número de T -auto-intersecciones no es cercano κT 2/(2π2(g − 1)) también decrece exponencialmiente rápido. Y, como corolario de este ultimo, obtenemos un resultado de Lalley que afirma que la mayoría de las geodésicas cerradas α en S con l(α) ≤ T tienen aproximadamente κl(α)2/(2π2(g − 1)) auto-intersecciones, cuando T es grande.

Palabras y frases clave. geodésica, flujo geodésico, corrientes geodésicas, número de intersección, mezcla, ergodicidad.


Texto completo disponible en PDF


References

[1] Ara Basmajian, Universal length bounds for non-simple closed geodesics on hyperbolic surfaces, J. Topology 6 (2013), no. 2, 513-524.         [ Links ]

[2] Francis Bonahon, Bouts des variétés hyperboliques de dimension 3, Ann. of Math. (2) 124 (1986), no. 1, 71-158.         [ Links ]

[3] _______, The geometry of Teichmüller space via geodesic currents, Invent. Math. 92 (1988), no. 1, 139-162.         [ Links ]

[4] Rufus Bowen, Periodic orbits for hyperbolic flows, Amer. J. Math. 94 (1972), 1-30.         [ Links ]

[5] _______, Maximizing entropy for a hyperbolic flow, Mathematical systems theory 7 (1973), no. 3, 300-303.         [ Links ]

[6] Moira Chas and Steven P. Lalley, Self-intersections in combinatorial topology: statistical structure, Invent. Math. 188 (2012), no. 2, 429-463.         [ Links ]

[7] T. N. T. Goodman, Relating topological entropy and measure entropy, Bull. London Math. Soc. 3 (1971), 176-180.         [ Links ]

[8] H. Huber, Zur analytischen Theorie hyperbolischer Raumformen und Bewegungsgruppen, Math. Annalen 138 (1959), 1-26.         [ Links ]

[9] Anatole Katok and Boris Hasselblatt, Introduction to the modern theory of dynamical systems, volume 54 of encyclopedia of mathematics and its applications, Cambridge University Press, Cambridge, With a supplementary chapter by Katok and Leonardo Mendoza, 1995.         [ Links ]

[10] Yuri Kifer, Large deviations in dynamical systems and stochastic processes, Transactions of the American Mathematical Society 321 (1990), no. 2, 505-524.         [ Links ]

[11] _______, Large deviations, averaging and periodic orbits of dynamical systems, Comm. Math. Phys. 162 (1994), no. 1, 33-46.         [ Links ]

[12] Steven Lalley, Statistical regularities of self-intersection counts for geodesics on negatively curved surfaces, Duke Math. J. (2014), no. 6, 1191- 1261.         [ Links ]

[13] Steven P. Lalley, Self-intersections of closed geodesics on a negatively curved surface: statistical regularities In Convergence in ergodic theory and probability (Columbus, OH, 1993), vol. 5, Ohio State Univ. Math. Res. Inst. Publ., Gruyter, Berlin, 1996, 263-272.         [ Links ]

[14] Grigoriy A. Margulis, On some aspects of the theory of Anosov systems, Springer Monographs in Mathematics, Springer-Verlag, Berlin, 2004, with a survey by Richard Sharp: Periodic orbits of hyperbolic flows, Translated from the Russian by Valentina Vladimirovna Szulikowska.         [ Links ]

[15] Jouni Parkkonen and Frederic Paulin, Counting common perpendicular arcs in negative curvature, 2013, http://arxiv.org/pdf/1305.1332.pdf.         [ Links ]

[16] Mark Pollicot and Richard Sharp, Angular self-intersections for closed geodesics on surfaces, Proc. Amer. Math. Soc. 134 (2006), no. 2, 419-426.         [ Links ]


(Recibido en mayo de 2015. Aceptado en agosto de 2015)

Creative Commons License Todo el contenido de esta revista, excepto dónde está identificado, está bajo una Licencia Creative Commons