SciELO - Scientific Electronic Library Online

 
vol.52 número1Stabilization of the Homotopy Groups of the Moduli Spaces of k-Higgs Bundles índice de autoresíndice de assuntospesquisa de artigos
Home Pagelista alfabética de periódicos  

Serviços Personalizados

Artigo

Indicadores

Links relacionados

  • Em processo de indexaçãoCitado por Google
  • Não possue artigos similaresSimilares em SciELO
  • Em processo de indexaçãoSimilares em Google

Compartilhar


Revista Colombiana de Matemáticas

versão impressa ISSN 0034-7426

Rev.colomb.mat. vol.52 no.1 Bogotá jan./jun. 2018

http://dx.doi.org/10.15446/recolma.v1n52.74521 

Original articles

On the continuity of partial actions of Hausdorff groups on metric spaces

Sobre la continuidad de acciones parciales de grupos de Hausdorff en espacios métricos

Jorge Gómez1  , Héctor Pinedo2  *  , Carlos Uzcátegui3 

1 Universidad Industrial de Santander, Bucaramanga - Colombia

2 Universidad Industrial de Santander, Bucaramanga - Colombia

3 Universidad Industrial de Santander, Bucaramanga - Colombia

Abstract:

We provide a sufficient condition for a separately continuous partial action of a Hausdorff group on a metric space to be continuous.

Key words: partial action; separately continuity; Hausdorff groups

Resumen:

Proporcionamos condiciones suficientes para que una acción parcial separadamente continua de un grupo de Hausdorff en un espacio métrico sea continua.

Palabras-clave: acción parcial; continuidad separada; grupos de Hausdorff

Text Complete end PDF

References

1. Abadie, F., Enveloping actions and takai duality for partial actions, Journal of Func. Anal. 197 (2003), 14-67. [ Links ]

2. Becker, H. and Kechris, A., The Descriptive Set Theory of Polish Group Actions, London Math. Soc. Lect. Notes, 1996. [ Links ]

3. Choi, K. and Lim, Y., Transitive partial actions of groups, Period. Math. Hung. 56 (2008), no. 2, 169-181. [ Links ]

4. Mc Clanahan, K., k-theory for partial crossed products by discrete groups, J. Funct. Anal. 130 (1995), 77-117. [ Links ]

5. Dokuchaev, M. and Khrypchenko, M., Partial cohomology of groups, J. Algebra 427 (2015), 142-182. [ Links ]

6. Dokuchaev, M., Novikov, B. and Pinedo, H., The partial schur multiplier of a group, J. Algebra 392 (2013), 199-225. [ Links ]

7. Exel, R., Partial actions of groups and actions of inverse semigroups, Proc. Am. Math. Soc. 126 (1998), no. 12, 3481-3494. [ Links ]

8. Gao, S., Invariant Descriptive Set Theory, Chapmann & Hall, 2009. [ Links ]

9. Gómez, J., Pinedo, H. and Uzcátegui, C., The open mapping principle for partial actions of polish groups, J. Math. Anal. Appl. 462 (2018), no. 1, 337-346. [ Links ]

10. Hoffmann-Jorgensen, J. and Topsoe, F., Analytic spaces and their application, in analytic sets., Academic Press 37 (1980), 311-340. [ Links ]

11. Kellendonk, J. and Lawson, M. V., Partial actions of groups, Internat. J. Algebra Comput. 14 (2004), no. 1, 87-114. [ Links ]

12. Pinedo, H., Partial projective representations and the partial schur multiplier: a survey, Bol. Mat. 22 (2015), no. 2, 167-175. [ Links ]

13. Pinedo, H. and Uzcátegui, C., Borel globalization of partial actions of polish groups, To appear in Archive for Mathematical Logic. [ Links ]

14. Pinedo, H. and Uzcátegui, C., Polish globalization of polish group partial actions, Math. Log. Quart. 63 (2017), no. 6, 481-490. [ Links ]

15. Quigg, J. C. and Raeburn, I., Characterizations of crossed products by partial actions, J. Operator Theory 37 (1997), 311-340. [ Links ]

Received: August 13, 2017; Accepted: November 11, 2018

*Correspondencia: Héctor Pinedo, Escuela de Matemáticas, Universidad Industrial de Santander, Facultad de Ciencias, Cra. 27 Calle 9 UIS Edificio 45, Bucaramanga - Colombia. Correo electrónico: hpinedot@uis.edu.co. DOI: https://doi.org/10.15446/recolma.v1n52.74521

Creative Commons License This is an open-access article distributed under the terms of the Creative Commons Attribution License