Services on Demand
Journal
Article
Indicators
-
Cited by SciELO
-
Access statistics
Related links
-
Cited by Google
-
Similars in SciELO
-
Similars in Google
Share
Revista Colombiana de Matemáticas
Print version ISSN 0034-7426
Rev.colomb.mat. vol.56 no.1 Bogotá Jan./June 2022 Epub Feb 04, 2023
https://doi.org/10.15446/recolma.v56n1.105617
Original article
Sizes of flats of cycle matroids of complete graphs
Los tamaños de los cerrados de la matroide gráfica del grafo completo
1 University of the Witwatersrand, Johannesburg, South Africa
We show that the problem of counting the number of flats of size k for a cycle matroid of a complete graph is equivalent to the problem of counting the number of partitions of an integer k into triangular numbers. In addition, we give some values of k such that there is no flat of size k in a cycle matroid of a complete graph of order n. Finally, we give a minimum bound for the number of values, k, for which there are no flats of size k in the given cycle matroid.
Keywords: Compositions; cycle matroid; flats; triangular number partitions; bad colouring
Demostraremos que el problema de contar los conjuntos cerrados de tamaño k de la matroide gráfica de un grafo completo es equivalente al problema de contar las particiones de un entero k en números triangulares. Adicionalmente, daremos unos valores de k tales que no existe ningún cerrado de tamaño k en la matroide gráfica de un grafo completo de orden n. Finalmente, daremos una cota inferior para el número de valores k para los cuales no existe ningún cerrado de tamaño k en la matroide gráfica.
Palabras clave: Composiciones; matroide; particiones de números triangulares
References
1. G. E. Andrews, Eureka! num = (+(+(, Journal of Number Theory and Technology 23 (1986), 285-293. [ Links ]
2. G. E. Andrews and K. Eriksson, Integer Partitions, Cambridge University Press, Cambridge, 2004. [ Links ]
3. L. E. Dickson, History of the Theory of Numbers, volume 2, Chelsea Publishing Company, New York, 1971. [ Links ]
4. E. G. Mphako, Tutte Polynomials of Perfect Matroid Designs, Combinatorics, Probability and Computing 9 (2000), 363-367. [ Links ]
5. J. G. Oxley, Matroid Theory, Oxford University Press, Oxford, 1992. [ Links ]
6. T. Trotter, Some identities for the Triangular Numbers, Journal of Recreational Mathematics 6 (1973), no. 2, 127-135. [ Links ]
Received: September 16, 2020; Accepted: May 27, 2022