Services on Demand
Journal
Article
Indicators
-
Cited by SciELO
-
Access statistics
Related links
-
Cited by Google
-
Similars in SciELO
-
Similars in Google
Share
Revista Colombiana de Matemáticas
Print version ISSN 0034-7426
Rev.colomb.mat. vol.56 no.2 Bogotá July/Dec. 2022 Epub Jan 03, 2024
https://doi.org/10.15446/recolma.v56n2.108371
Original articles
A Note on the Range of a Derivation
Una nota sobre el rango de una derivada
1 Université Chouaib Doukkali, El Jadida, Marruecos
2 Université Ibn Tofail, Kenitra, Marruecos
Let H be a separable infinite dimensional complex Hilbert space, and let L(H) denote the algebra of all bounded linear operators on H into itself. Given A, B ∈ L(H), define the generalized derivation δ A, B ∈ L(L(H)) by δ A, B (X) = AX - XB. An operator A ∈ L(H) is P-symmetric if AT = TA implies AT * = T * A for all T ∈ C 1(H) (trace class operators). In this paper, we give a generalization of P-symmetric operators. We initiate the study of the pairs (A, B) of operators A, B ∈ L(H) such that R(δ A, B ) W* = R(δ A, B ) W* , where R(δ A, B ) W* denotes the ultraweak closure of the range of δ A, B . Such pairs of operators are called generalized P-symmetric. We establish a characterization of those pairs of operators. Related properties of P-symmetric operators are also given.
Keywords: Generalized derivation; Fuglede-Putnam property; D-symmetric operator; P-symmetric operator; Compact operator
Sea H un espacio de Hilbert separable sobre los complejos y denote por L(H) al álgebra de los operadores acotados de H es sí mismo. Dados A, B ∈ L(H), defina la derivada generalizada δ A, B ∈ L(L(H)) como δ A, B (X) = AX - XB. Un operador A ∈ L(H) es P-simétrico si la condición AT = TA implica que AT* = T* A para todo T ∈ C 1(H) (los operadores de clase de traza). En este artículo presentamos una generalización de los operadores P-simétricos. En este artículo estudiamos pares (A, B) de operadores A, B ∈ L(H) tales que R(δ A, B ) W* = R(δ A, B ) W* , donde R(δ A, B ) W* denota la clausura ultradébil del rango δ A, B . A esta clase de operadores los llamamos operadores P-simétricos generalizados. En este artículo damos una caracterización de esta clase de pares de operadores y presentamos propiedades de los operadores P-simétricos generalizados.
Palabras clave: Derivada generalizada; propiedad de Fuglede-Putnam; operador D-simétrico; operador P-simétrico; operador compacto
References
1. J. H. Anderson, J. W. Bunce, J. A. Deddens, and J. P. Williams, C*-algebras and derivation ranges, Acta Sci. Math. (Szeged) 40 (1978), no. 3-4, 211-227. [ Links ]
2. C. A. Bergerand and B. I. Shaw, Self-commutators of multicyclic hyponormal operators are always trace class, Bull. Amer. Math. Soc. 79 (1973), 1193-1199. [ Links ]
3. S. Bouali and Y. Bouhafsi, On the range-kernel orthogonality and p-symmetric operators, Math. Inequal. Appl. 9 (2006), no. 3, 511-519. [ Links ]
4. S. Bouali and Y. Bouhafsi, P-symmetric operators and the range of a subnormal derivation, Acta Sci. Math(Szeged) 72 (2006), no. 3-4, 701-708. [ Links ]
5. S. Bouali and J. Charles, Extension de la notion d'opérateur D-symétrique I, Acta Sci. Math. (Szeged) 51 (1993), no. 1-4, 517-525. [ Links ]
6. S. Bouali and J. Charles , Extension de la notion d'opérateur D-symétrique II, Linear algebra Appl. 225 (1995), no. 3, 175-185. [ Links ]
7. S. Bouali and M. Ech-chad, Generalized D-Symmetric operators II, Canad. Math. Bull. 54 (2011), no. 1, 21-27. [ Links ]
8. B. C. Gupta and P. B. Ramanujan, A note on D-symmetric operators, Bull. Austral. Math. Soc. 23 (1981), no. 3, 471-475. [ Links ]
9. C. R. Rosentrater, Not every D-symmetric operator is GCR, Proc. Amer. Math. Soc. 81 (1981), no. 3, 443-446. [ Links ]
10. C. R. Rosentrater , Compact operators and derivations induced by weighted shifts, Pacific J. Math. 104 (1983), no. 2, 465-470. [ Links ]
11. J. G. Stampfli, On self-adjoint derivation ranges, Pacific J. Math . 82 (1979), no. 1, 257-277. [ Links ]
12. J. P. Williams , On the range of a derivation, Pacific J. Math . 38 (1971), 273-279. [ Links ]
13. J. P. Williams , Derivation ranges: open problems. Topics in modern operator theory. Operator theory: Advances and Applications, 2, Birkhäuser-Verlag (1981), 319-328. [ Links ]
14. T. Yoshino, Subnormal operators with a cyclic vector, Tôhoku Math. J. 21 (1969), 47-55. [ Links ]
Received: January 31, 2022; Accepted: October 17, 2022