SciELO - Scientific Electronic Library Online

 
vol.41 issue1Finite Mixture of Compositional Regression With Gaussian ErrorsThe Odd Log-Logistic Dagum Distribution: Properties and Applications author indexsubject indexarticles search
Home Pagealphabetic serial listing  

Services on Demand

Article

Indicators

Related links

  • On index processCited by Google
  • Have no similar articlesSimilars in SciELO
  • On index processSimilars in Google

Share


Revista Colombiana de Estadística

Print version ISSN 0120-1751

Rev.Colomb.Estad. vol.41 no.1 Bogotá Jan./June 2018

http://dx.doi.org/10.15446/rce.v41n1.57803 

Artículos originales de investigación

A Bivariate Model based on Compound Negative Binomial Distribution

Un modelo basado en bivariadas compuesto distribución binomial negativa

Maha Omair1  a  , Fatimah Almuhayfith2  b  , Abdulhamid Alzaid1  c 

1Department of Statistics and Operations Research, College of Sciences, King Saud University, Riyadh, Saudi Arabia.

2Department of Mathematics and Statistics, College of Sciences, King Faisal University, Alahsa, Saudi Arabia.

Abstract

A new bivariate model is introduced by compounding negative binomial and geometric distributions. Distributional properties, including joint, marginal and conditional distributions are discussed. Expressions for the product moments, covariance and correlation coefficient are obtained. Some properties such as ordering, unimodality, monotonicity and self-decomposability are studied. Parameter estimators using the method of moments and maximum likelihood are derived. Applications to traffic accidents data are illustrated.

Key words: Bivariate distribution; Compound distribution; Correlation coefficient; Divisibility; Geometric distribution; Moments; Negative binomial distribution; Total positivity

Resumen

Un nuevo modelo de dos variables se introduce mediante la composición distribuciones binomiales negativos y geométricos. propiedades distributivas, incluyendo distribuciones conjuntas, marginales y condicionales se discuten. se obtienen las expresiones para los momentos de productos, la covarianza y el coeficiente de correlación. Se estudian algunas propiedades tales como pedidos, unimodalidad, monotonía y la auto-decomposability. Estimadores de parámetros utilizando el método de los momentos y de máxima verosimilitud se derivan. Aplicaciones a los datos de accidentes de tráfico se ilustran.

Palabras-clave: coeficiente de correlación; distribución binomial negativa; distribución bivariada; distribución compuesto; distribución geométrica; divisibilidad; momentos; positividad total

Full text available only in PDF format.

References

Abramowitz, M. & Stegun, I. A. (1972), Handbook of mathematical functions with formulas, graphs and mathematical tables, 10th edn, National Bureau of Standards Applied Marhematics Series, Washington, DC. [ Links ]

Alzaid, A. A., Almuhayfith, F. E. & Omair, M. A. (2017), 'Bivariate regression models based on compound Poisson distribution', Communication in Statistics-Theory and Methods 46(15), 7375-7389. [ Links ]

Barlow, R. E. & Proschan, F. (1975), Statistical theory of reliability and life testing: probability models, Holt, Rinehart and Winston, Inc, New York. [ Links ]

Cacoullos, T. & Papageorgiou, H. (1980), 'On some bivariate probability models applicable to traffic accidents and fatalities', International Statistical Review/Revue Internationale de Statistique 48(3), 345-356. [ Links ]

Cacoullos, T. & Papageorgiou, H. (1982), 'Bivariate negative binomial-Poisson and negative Binomial-Bernoulli models with an application to accident data', Statistics and Probability: Essays in Honor of CR Rao, G. Kallianpur et al.(eds) pp. 155-168. [ Links ]

Cai, J. & Garrido, J. (2000), 'Two-sided bounds for tails of compound negative binomial distributions in the exponential and heavy-tailed cases', Scandinavian Actuarial Journal 2000(2), 102-120. [ Links ]

dhaene, J. (1991), 'Approximating the compound negative binomial distribution by the compound Poisson distribution', Bulletin of the Swiss Association of Actuaries 1, 117-121. [ Links ]

Drekic, S. & Willmot, G. E. (2005), 'On the moments of the time of ruin with applications to phase-type claims', North American Actuarial Journal 9(2), 17-30. [ Links ]

Gerber, H. U. (1984), 'Error bounds for the compound Poisson approximation', Insurance: Mathematics and Economics 3(3), 191-194. [ Links ]

Hanagal, D. D. & Dabade, A. D. (2013), 'Compound negative binomial shared frailty models for bivariate survival data', Statistics & Probability Letters 83(11), 2507-2515. [ Links ]

Jewell, W. & Milidiu, R. (1986), 'Strategies for computation of compound distributions with two-sided severities', Insurance: Mathematics and Economics 5(2), 119-127. [ Links ]

Johnson, N. L., Kemp, A. W. & Kotz, S. (2005), Univariate discrete distributions, 3rd edn, John Wiley & Sons, Inc, New York. [ Links ]

Karp, D. & Sitnik, S. (2010), 'Log-convexity and log-concavity of hypergeometriclike functions', Journal of Mathematical Analysis and Applications 364(2), 384-394. [ Links ]

Kemp, A. W. (1968), 'A wide class of discrete distributions and the associated differential equations', Sankhya: The Indian Journal of Statistics, Series A 30(4), 401-410. [ Links ]

Leiter, R. E. & Hamdan, M. (1973), 'Some bivariate probability models applicable to traffic accidents and fatalities', International Statistical Review/Revue Internationale de Statistique 41(1), 87-100. [ Links ]

Özel, G. (2011a), 'A bivariate compound Poisson model for the occurrence of foreshock and aftershock sequences in turkey', Environmetrics 22(7), 847-856. [ Links ]

Özel, G. (2011b), 'On certain properties of a class of bivariate compound Poisson distributions and an application to earthquake data', Revista Colombiana de Estadistica 34(3), 545-566. [ Links ]

Panjer, H. H. & Willmot, G. E. (1981), 'Finite sum evaluation of the negative binomial-exponential model', ASTIN Bulletin 12(2), 133-137. [ Links ]

Papageorgiou, H. (1985), 'On a bivariate Poisson-geometric distribution', Applicationes Mathematicae 4(18), 541-547. [ Links ]

Papageorgiou, H. (1995), 'Some remarks on the d compound Poisson distribution', Statistical Papers 36(1), 371-375. [ Links ]

Papageorgiou, H. & Loukas, S. (1988), 'On estimating the parameters of a bivariate probability model applicable to traffic accidents', Biometrics 44, 495-504. [ Links ]

Ramsay, C. M. (2009), 'The distribution of compound sums of Pareto distributed losses', Scandinavian Actuarial Journal 2009(1), 27-37. [ Links ]

Shaked, M. & Shanthikumar, J. G. (2007), Stochastic orders, 1st edn, Springer Science & Business Media, New York. [ Links ]

Steutel, F. W. & van Harn, K. (2004), Infinite divisibility of probability distributions on the real line, 10th edn, Marcel Dekker, Inc, New York. [ Links ]

Subrahmaniam, K. (1966), 'On a general class of contagious distributions: The Pascal-Poisson distribution', Trabajos de estadística y de investigación operativa 17(2), 109-128. [ Links ]

Subrahmaniam, K. (1978), 'The Pascal-Poisson distribution revisited: estimation and efficiency', Communications in Statistics-Theory and Methods 7(7), 673-683. [ Links ]

Upadhye, N. & Vellaisamy, P. (2014), 'Compound Poisson approximation to convolutions of compound negative binomial variables', Methodology and Computing in Applied Probability 16(4), 951-968. [ Links ]

Vellaisamy, P. & Upadhye, N. (2009a), 'Compound negative binomial approximations for sums of random variables', Probability and Mathematical Statistics 29(2), 205-226. [ Links ]

Vellaisamy, P. & Upadhye, N. (2009b), 'On the sums of compound negative binomial and gamma random variables', Journal of Applied Probability 46(1), 272-283. [ Links ]

Wang, Z. (2011), 'One mixed negative binomial distribution with application', Journal of Statistical Planning and Inference 141(3), 1153-1160. [ Links ]

Willmot, G. E. & Lin, X. (1997), 'Upper bounds for the tail of the compound negative binomial distribution', Scandinavian Actuarial Journal 1997(2), 138-148. [ Links ]

Creative Commons License This is an open-access article distributed under the terms of the Creative Commons Attribution License