SciELO - Scientific Electronic Library Online

 
vol.33 número2Skew PBW Extensions of Baer, quasi-Baer, p.p. and p.q.-rings índice de autoresíndice de assuntospesquisa de artigos
Home Pagelista alfabética de periódicos  

Serviços Personalizados

Artigo

Indicadores

Links relacionados

  • Em processo de indexaçãoCitado por Google
  • Não possue artigos similaresSimilares em SciELO
  • Em processo de indexaçãoSimilares em Google

Compartilhar


Revista Integración

versão impressa ISSN 0120-419X

Integración - UIS vol.33 no.2 Bucaramanga jul./dez. 2015

 

On the existence of limit cycles for some
planar vector fields

L. ROCÍO GONZÁLEZ-RAMÍREZ a, b, OSVALDO OSUNAa, *,
RUBÉN SANTAELLA-FOREROa

aUniversidad Michoacana de San Nicolás de Hidalgo, Instituto de Física y Matemáticas, Michoacán, México.
bCatedrática Conacyt.


Abstract.In this work, we prove the existence of limit cycles in planar systems that can be written as appropriate perturbations of Hamiltonian systems. In particular, we obtain criteria for the existence of limit cycles for Liénard-type systems. We present examples in order to illustrate our results.

Keywords: Poincaré-Bendixson theorem, trapping region, Liénard equation, limit cycles.
MSC2010: 34C07, 34C05, 34C25.


Sobre la existencia de ciclos límite de ciertos campos
vectoriales en el plano

Resumen. En este trabajo, demostramos la existencia de ciclos límite en sistemas planos que pueden escribirse como perturbaciones apropiadas de sistemas Hamiltonianos. En particular, obtenemos criterios de existencia de ciclos límite para sistemas tipo Liénard. Además, presentamos algunos ejemplos con el fin de ilustrar los resultados obtenidos.

Palabras clave: Teorema de Poincaré-Bendixson, anillo invariante, ecuación de Liénard, ciclos límite.


Texto Completo disponible en PDF


Referencias

[1] Arrowsmith D.K. and Place C.M., Dynamical systems. Differential equations, maps and chaotic behaviour, Chapman & Hall, London, 1992.         [ Links ]

[2] Bendixson I., "Sur les curbes définiés par des équations différentielles" (French), Acta Math. 24 (1901), No. 1, 1-88.         [ Links ]

[3] Carletti T., Rosati L. and Villari G., "Qualitative analysis of phase portrait for a class of planar vector fields via the comparison method", Nonlinear Anal. 67 (2007), No. 1, 39-51.         [ Links ]

[4] Ciambellotti L., "Uniqueness of limit cycles for Liénard systems. A generalization of Massera's theorem", Qual. Theory Dyn. Syst. 7 (2009), No. 2, 405-410.         [ Links ]

[5] Perko L., Differential equations and dynamical systems, Third edition, Texts in Applied Mathematics, 7, Springer-Verlag, New York, 2001.         [ Links ]

[6] Poincaré H., "Mémoire sur les curbes définiés par une équation différentielle II", J. Math. Pures Appl. 8 (1882), 251-296.         [ Links ]

[7] Ye Y.Q., Cai S.L., Chen L.S., Huang K.C., Lou D.J., Ma Z.E., Wang E.N., Wang M.S. and Yang X.A., Theory of limit cycles. Translations of Mathematical Monographs, 66, American Mathematical Society, Providence, RI, 1986.         [ Links ]


*E-mail: osvaldo@ifm.umich.mx
Received: 9 July 2015, Accepted: 24 November 2015.
To cite this article: L.R. González-Ramírez, O. Osuna, R. Santaella-Forero, On the existence of limit cycles for some planar vector fields, Rev. Integr. Temas Mat. 33 (2015), No.2, 191-198.