SciELO - Scientific Electronic Library Online

 
vol.40 número1Una identidad de tipo Fink para la integral de funciones analíticas complejas en caminos de dominios generales índice de autoresíndice de materiabúsqueda de artículos
Home Pagelista alfabética de revistas  

Servicios Personalizados

Revista

Articulo

Indicadores

Links relacionados

  • En proceso de indezaciónCitado por Google
  • No hay articulos similaresSimilares en SciELO
  • En proceso de indezaciónSimilares en Google

Compartir


Revista Integración

versión impresa ISSN 0120-419Xversión On-line ISSN 2145-8472

Integración - UIS vol.40 no.1 Bucaramanga ene./jun. 2022  Epub 25-Ago-2022

https://doi.org/10.18273/revint.v40n1-2022007 

Original articles

Generalized Fractional Ostrowski and Grüss type inequalities involving several Banach algebra valued function

Desigualdades fraccionarias generalizadas de tipo Ostrowski y Grüss que involucran varias funciones valoradas del álgebra de Banach

GEORGE A. ANASTASSIOUa 

aDepartment of Mathematical Sciences, University of Memphis, Memphis, TN 38152, U.S.A. E-mail: ganastss@memphis.edu.


Abstract.

Using generalized Caputo fractional left and right vectorial Taylor formulae, we establish mixed fractional Ostrowski and Grüss type inequalities involving several Banach algebra valued functions. The estimates are with respect to all norms ∥·∥p, 1 ≤ p ≤ ∞.

MSC2010:

26A33, 26D10, 26D15.

Keywords: Generalized fractional derivative; generalized fractional inequalities; Ostrowski inequality; Grüss inequality; Banach algebra

Resumen.

Usando fórmulas de Taylor vectoriales fraccionarias izquierda y derecha de Caputo generalizadas, establecemos desigualdades fraccionarias mixtas de tipo Ostrowski y Grüss que involucran varias funciones valoradas del álgebra de Banach. Las estimaciones son con respecto a todas las normas ∥·∥p, 1 ≤ p ≤ ∞.

Palabras clave: Derivada fraccionaria generalizada; desigualdades fraccionarias generalizadas; desigualdad de Ostrowski; desigualdad de Grüss; álgebra de Banach

1. Introduction

The following results motivate our work.

Theorem 1.1 (1938, Ostrowski [10]). Let f : [a, b] → ℝ be continuous on [a, b] and differentiable on (a, b) whose derivative f′ : (a, b) → ℝ is bounded on (a, b), i.e., . Then

for any x ∈ [a, b]. The constant is the best possible.

Ostrowski type inequalities have great applications to integral approximations in Numerical Analysis.

Theorem 1.2 (1882, Čebyšev [6]). Let f, g : [a, b] → ℝ be absolutely continuous functions with f, g ∈ L ([a, b]). Then

The above integrals are assumed to exist.

The related Grüss type inequalities have many applications to Probability Theory. We presented also ([4], Ch. 8,9) mixed fractional Ostrowski and Grüss-Cebysev type inequalities for several functions, acting to all possible directions. The estimates involve the left and right Caputo fractional derivatives. See also the monographs written by the author [2], Chapters 24-26 and [3], Chapters 2-6.

In this article we generalize [4], Ch. 8,9 for several Banach algebra valued functions. Now our left and right Caputo fractional derivatives are for Banach space valued functions and our integrals are of Bochner type. Several applications finish this article. Inspiration came also from [7], [8].

2. Vectorial background fractional calculus

Here all come from [5]. We need:

Definition 2.1 ([5], p. 106). Let α > 0, ⌈α⌉ = n, ⌈·⌉ the ceiling of the number. Let f ∈ Cn ([a, b] , X), where [a, b] ⊂ ℝ, and (X, ∥·∥) is a Banach space. Also let g ∈ C1 ([a, b]) , strictly increasing such that g−1 ∈ Cn ([g (a) , g (b)]) .

We define the left generalized g-fractional derivative X-valued of f of order α as follows:

∀ x ∈ [a, b], where Γ is the gamma function. The last integral is of Bochner type ([1], pp. 422-428; [9]).

If α , by Theorem 4.10 ([5], p. 98), we have that .

We set

When g = id, then

the usual left X-valued Caputo fractional derivative, see [5], Ch. 1.

We also need:

Definition 2.2 ([5], p. 107). Let α > 0, ⌈α⌉ = n, · ⌈・⌉ the ceiling of the number. Let f ∈ Cn ([a, b] , X), where [a, b] ⊂ ℝ, and (X, ∥・∥) a Banach space. Let g ∈ C1 ([a, b]) , strictly increasing such that g−1 ∈ Cn ([g (a) , g (b)]) .

We define the right generalized g-fractional derivative X-valued of f of order α as follows:

∀ x ∈ [a, b]. The last integral is of Bochner type.

If α , by Theorem 4.11 ([5], p. 101), we have that

We set

When g = id, then

the usual right X-valued Caputo fractional derivative, see [5], Ch. 2.

We mention the following generalized fractional Taylor formulae with integral remainders over Banach spaces.

Theorem 2.3 ([5], p. 107). Let α > 0, n = ⌈α⌉, and f ∈ C n ([a, b] , X), where [a, b] ⊂ ℝ and (X, · ) a Banach space. Let g ∈ C1 ([a, b]), strictly increasing such that g−1 ∈ Cn ([g (a) , g (b)]), a ≤ x ≤ b. Then

We also mention:

Theorem 2.4 ([5], p. 108). Let α > 0, n = ⌈α⌉, and f ∈ C n ([a, b] , X), where [a, b] ⊂ ℝ and (X, ∥·∥) a Banach space. Let g ∈ C1 ([a, b]), strictly increasing such that g−1 ∈ Cn ([g (a) , g (b)]), a ≤ x ≤ b. Then

If 0 < α ≤ 1, then the sums in (9), (10) disappear.

Also in (9), (10), we have that

3. Banach Algebras background

All here come from [11].

We need:

Definition 3.1 ([11], p. 245). A complex algebra is a vector space A over the complex filed C in which a multiplication is defined that satisfies

and

for all x, y and z in A and for all scalars α.

Additionally if A is a Banach space with respect to a norm that satisfies the multiplicative inequality

and if A contains a unit element e such that

and

then A is called a Banach algebra.

A is commutative iff xy = yx for all x, y ∈ A.

Remark 3.2. Commutativity of A will be explicited stated when needed.

There exists at most one e ∈ A that satisfies (15).

Inequality (14) makes multiplication to be continuous, more precisely left and right continuous, see [11], p. 246.

Multiplication in A is not necessarily the numerical multiplication, it is something more general and it is defined abstractly, that is for x, y ∈ A we have xy ∈ A, e.g. composition or convolution, etc.

For nice examples about Banach algebras see [11], p. 247-248, S (Λ) 10.3.

Remark 3.3. Next we mention about integration of A-valued functions, see [11], p. 259, S (Λ) 10.22:

If A is a Banach algebra and f is a continuous A-valued function on some compact Hausdorff space Q on which a complex Borel measure µ is defined, then f dµ exists and has all the properties that were discussed in Chapter 3 of [11], simply because A is a Banach space. However, an additional property can be added to these, namely: If x ∈ A, then

and

The Bochner integrals we will involve in our article follow (17) and (18). Also, let f ∈ C ([a, b] , X), where [a, b] ⊂ ℝ, (X, · ) is a Banach space. By [5], p. 3, f is Bochner integrable.

4. Main Results

We start with mixed generalized fractional Ostrowski type inequalities for several functions over a Banach algebra. A uniform estimate follows.

Theorem 4.1. Let (A, ∥・∥) be a Banach algebra, x0 ∈ [a, b] ⊂ ℝ, α > 0, n = ⌈α⌉, fi ∈ Cn ([a, b] ,A), i = 1, ..., r ∈ ℕ − {1}; g ∈ C1 ([a, b]), strictly increasing such that g−1 ∈ Cn ([g (a) , g (b)]), with (fi ◦ g−1 ) (k) (g (x0)) = 0, k = 1, ..., n − 1; i = 1, ..., r.

Denote by

Then

Proof. Since (fi ◦ g−1) (k) (g (x0)) = 0, k = 1, ..., n − 1; i = 1, ..., r, we have by Theorem 2.3 that

∀ x ∈ [x0, b] ,

and by Theorem 2.4 that

∀ x ∈ [a, x0]

for all i = 1, ..., r.

Left multiplying (21) and (22) with we get, respectively,

∀ x ∈ [x0, b] ,

and

∀ x ∈ [a, x0] ;

for all i = 1, ..., r.

∀ x ∈ [x0, b] ,

and

∀ x ∈ [a, x0] .

Next we integrate (25) and (26) with respect to x ∈ [a, b]. We have

and

Finally, adding (27) and (28) we obtain the useful identity

Therefore we get that

Hence it holds

proving (20).

Next comes an L1 estimate.

Theorem 4.2. All as in Theorem 4.1, with α ≥ 1. Then

proving Theorem 4.2.

An Lp estimate follows.

Theorem 4.3. All as in Theorem 4.1. Let now p, q > , with α > . Then

Proof. We have that

proving Theorem 4.3.

We continue with generalized fractional Grüss-Cebysev type inequalities for several functions over a Banach algebra. A uniform estimate follows.

Theorem 4.4. Let (A, ∥·∥) be a Banach algebra, 0 < α ≤ 1, fi 1, ..., r ∈ ℕ − {1}; g ∈ C1 ([a, b]), strictly increasing such that g−1 x0 ∈ [a, b] ⊂ ℝ and θ (f1, ..., fr) (x0) as in (19). Assume that

Denote by

Then it holds

Proof. We have that

Hence it holds

proving (43).

Next comes an Lp estimate

Theorem 4.5. Let (A, ∥·∥) be a Banach algebra, 0 < α ≤ 1, fi 1, ..., r ∈ ℕ − {1}; g ∈ C1 ([a, b]), strictly increasing such that g−1 Let p, q > . Assume that

and set

Then

Proof. Here Φ (x0) is as in (38).

Clearly then it holds

Therefore we obtain

Hence we get

proving (49).

5. Applications

Remark 5.1. Assume from now on that (A, ∥·∥) is a commutative Banach algebra. Then, we get that

x0 ∈ [a, b] .

Furthermore, it holds (0 < α ≤ 1 case)

When r = 2, we get that

x0 ∈ [a, b] ,

and

0<α≤1.

Corollary 5.2. All as in Theorem 4.1, A is a commutative Banach algebra, r = 2. Then

Proof. By Theorem 4.1.

We continue with

Corollary 5.3. All as in Theorem 4.4, A is a commutative Banach algebra, r = 2, 0 < α≤ 1, M (f1, f2) as in (41). Then

Proof. By Theorem 4.4.

Finally we derive:

Corollary 5.4. All as in Corollary 5.2, for g (t) = et. Then

Proof. By Corollary 5.2.

References

[1] Aliprantis C. and Border K., Infinite Dimensional Analysis, Springer, 3rd ed., Berlin, 2006. doi: 10.1007/3-540-29587-9 [ Links ]

[2] Anastassiou G.A., Fractional Differentiation Inequalities, Springer, 1th ed., New York, 2009. doi: 10.1007/978-0-387-98128-4 [ Links ]

[3] Anastassiou G.A., Advances on Fractional Inequalities, Springer, 1th ed., New York, 2011. doi: 10.1007/978-1-4614-0703-4 [ Links ]

[4] Anastassiou G.A., Intelligent Comparisons: Analytic Inequalities, Springer, Heidelberg, 1th ed., New York, 2016. doi: 10.1007/978-3-319-21121-3 [ Links ]

[5] Anastassiou G.A., Intelligent Computations: Abstract Fractional Calculus, Inequalities, Approximations, Springer, 1th ed., New York, 2018. doi: 10.1007/978-3-319-66936-6 [ Links ]

[6] Čebyšev P.L., “Sur les expressions approximatives desintégrales définies par les aures prises entre les mêmes limites”, Proc. Math. Soc. Charkov, 2 (1882), 93-98. doi: 10.12691/tjant-2-3-2 [ Links ]

[7] Dragomir S.S., “Noncommutative Ostrowski type inequalities for functions in Banach algebras”, in RGMIA Res. Rep. Coll., 24 (2021). https://rgmia.org/papers/v24/v24a10.pdf [cited 5 October, 2021]. [ Links ]

[8] Dragomir S.S., “New Noncommutative Grüss type inequalities for functions in Banach algebras”, in RGMIA Res. Rep. Coll., 24 (2021). https://rgmia.org/papers/v24/v24a13.pdf [cited 5 October, 2021]. [ Links ]

[9] Mikusinski J., The Bochner integral, Birkhäuser, vol. 55, New York, 1978. doi: 10.1007/978-3-0348-5567-9_3 [ Links ]

[10] Ostrowski A., “Über die Absolutabweichung einer differentiabaren Funcktion von ihrem Integralmittelwert”, Comment. Math. Helv., 10 (1938), 226-227. [ Links ]

[11] Rudin W., Functional Analysis, McGraw-Hill, 2nd ed., New York, 1991. [ Links ]

To cite this article: G.A. Anastassiou, Generalized Fractional Ostrowski and Grüss type inequalities in-volving several Banach algebra valued functions, Rev. Integr. Temas Mat., 40 (2022), No. 1, 119-136. doi: 10.18273/revint.v40n1-2022007

Received: October 05, 2021; Accepted: January 31, 2022

Creative Commons License This is an open-access article distributed under the terms of the Creative Commons Attribution License